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GENERAL INTRODUCTIOI 

The observation of ion-molecule reactions with mass spectrometers 

goes back as early as 1916 ̂ en Denpster̂  reported the observation of Hg 

from the reaction + H2. But the event vrfiich really spurred the study of 

ion-molecule reactions was the discovery of the reaction 

CH| + CH4 > CH| + Œ3 

by Tal'roze and Lyubimova,̂  Stevenson and Schissler,- and Field et al.̂  

independently in the early 1950s. Since then the investigation of ion-

molecule reactions has been carried on quite actively, both experimentally 

and theoretically. Especially in the last 20 years, based on much-improved 

equipnent, the emergence of new technologies and the rapid increase of 

conçjuting speed, the interest in ion-molecule collision has spread very 

rapidly. 

In the early stages of the development of interest in ion-molecule 

reactions, all studies were aimed at the measurement of rate constants. 

Starting from the conventional mass spectrometer, in which the ionization 

chamber served as the reaction gas cell, new instrumentation was designed 

or adapted specially for the study of collision reactions: pulsed source 

reactor̂ , flowing afterglow techniquê , ion cyclotron resonance mass 

spectrometer,̂ '® tandem mass spectrometer̂ '-̂  etc. 

Since the 1950s, development of advanced technologies has made it 

possible to probe a rate process directly at the microscopic, molecular 
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level either experimentally or theoretically. Among them the most inçortant 

are the molecular beam technique,the vacuum ultraviolet (VUV) light 

sourcethe laser as light source and probing measurê ®, the 

coincidence technique,and iitçroved coitçuter hardware and software. 

Since the late 1970s studies of state-selected ion-molecule reaction 

have expanded rapidly, especially with the application of the coincidence 

technique. Eh/en though the early studies were limited by the single cell 

arrangement, many significant results have been published about symmetric 

ion-molecule reactionŝ ®"̂ ® at low collision energies. An exaitple is the 

study of the symmetric charge transfer reaction 

 ̂°2 + °2 

for different vibrational energy levels done by Baer et al.̂  ̂

To extend the state-selected study into unsymmetrical ion-molecule 

collisions and to observe the effects of higher collision energies, a 

double cell experimental arrangement coupled with threshold electron-

secondary ion coincidence (TESICO) was developed by Tanaka et al.̂  ̂They 

studied the reaction 

Ar''"(̂ P3/2,l/2) + % > + H 

Since low ion collection efficiency is inherent to their apparatus,- their 

direct measurements were limited to relative cross sections. 
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In 1981, Anderson et al.̂  ̂achieved no less than 98% ion collection 

efficiency by using the radio frequency (rf) octopole ion guide technique. 

They were able to measure the absolute total cross sections for state-

selected reactions in a gas cell separated from the photoionization region. 

However, the lack of primary mass analysis in their apparatus, in contrast 

with the single cell experiment, prevented them from studying symmetric 

ion-molecule reactions. For exançle,- the reaction 

"2 "2 fig T n 

can not be studied because of the formation of Hg in the photoionization 

region. 

By combining a VUV light source, molecular beam, and rf octopole ion 

guide techniques with tandem mass spectrometry, we have developed a 

photoionization tandem mass spectrometer. The first quadrupole mass filter 

(QMF) removes all the undesired ions produced in the photoionization 

region, and therefore makes it possible to measure absolute total cross 

sections for either symmetric or unsirmmetric ion-molecule reactions. With 

this apparatus we have studied several state-selected ion-molecule 

reactionŝ  ̂(appears in Section II. and III. of Part I. herein) using 

collision energies up to = 280 eV: 

Et(v) + E2\v'=0) > tit + H 

Ar"^(,1/2^ N2(v=0) > N2 + Ar 
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N2(V) + Ar(̂ SQ) > Ar"*" + N2 

Recently, v̂ e cop.structed a constructed a triple-quadrupole double-

octopcle photoionization mass spectrometer. With a specially designed 

experimental procedure, we were able to measure absolute cross sections for 

state-to-state collision induced energy transfer, such as (appears in Part 

II. herein) 

Ar'(̂ P3/2) + N2 ( v=0 ) > Ar ' ( ̂̂ 2/2 ̂ 2̂ 

The advantage of this apparatus is the high ion collection efficiency 

for primary ions and product ions formed in both reaction gas cells. The 

internal state distributions of ions from the first reaction gas cell are 

then probed by further reacting with a neutral gas in the second reaction 

gas cell. Therefore, two sequential ion-molecule reactions can be conducted 

at one time and the corresponding absolute total cross sections can be 

measured. The first QMF is used to filter undesired ions produced in the 

photoionization region. The second gîF is used to select reactant ions for 

"3̂  

cnis sppsrsiLus can =e usee scucy ' 

molecule reactions. 

The recent development of the capability to measure absolute total 

is only the beginning of a new chapter in the study of ion-molecule 

reactions. An accumulated data base of absolute total cross sections will 
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provide a good basis for the development of theoretical studies of state-

selected and state-to-state ion-molecule reaction, v̂ ich in turn will 

result in a better understanding of the reaction dynamics of ion-molecule 

interactions as a vrtiole. 

An expected further development is the coupling of the tandem mass 

spectrometer-rf octopole ion guide technique with the coincidence 

technique,- and laser light source and laser probe in order to prepare the 

primary ion in a specific state and to measure the final state distribution 

directly. 
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EXPIANATIC»! OF THESIS FORMAT 

This thesis is separated into two parts. Part I is divided into three 

sections according to the ion-iDolecule reaction being studied. Part II has 

only one section, and is also formated as in Part I. Each section is an 

independent article prepared in a format ready for submission for 

publication. The experimental apparatus is described in detail in section 

I, and the specific operating conditions of the apparatus are presented in 

a brief experimental description in each section. A detailed description of 

the modified experimental apparatus is presented in Part II. The figures, 

tcibles, references and appendixes cited in each section refer only to those 

contained in that section. Some selected conpater programs and the block 

diagram of the conçuter system are conçiled in APPENDIX A and B at the end 

of this thesis. 
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PART I. 

STATE-SELECTED STUDY OF ION-MOLECULE REACTIONS USING THE 

TANDEM MOLECULAR BEAM PHOTOICMIZATIŒ MASS SPECTROMETRY 
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SECTIŒ I. 

A VIBRATIŒqAL STATE-SELECTED STUDY OF THE REACTIW 

H2̂ (VQ') + H2{VQ"=0) —> + H 

USING THE TANDEM PHOTOICMIZATIW MASS SPECTROMETRY 

AND RADIO FREQUENCY ION GUIDE METHODS 

Intrcxîuction 

The sinçlicity of the reaction between H2''" and H2 makes it a system 

of fundamental importance to molecular reaction dynamics. The H2'̂  + H2 

reaction and its isotopic variations have been investigated by nearly all 

accessible experimental techniques.In spite of its apparent 

simplicity, the reaction is rich in chemistry. Combining the results of 

previous experimental and theoretical̂ "̂̂  ̂studies, a qualitative picture 

about the H2'*' T K2 reaction has eserged. At lew center-of-mass collision 

energies (2̂ , ), the major product channel is the formation of 4- H 

v?hich has the cross sections close to the predictions of the Langevin-

Gioumousis-Stevens (LGS) model. In principlethe Ĥ "*" formation can result 

from the proton and the hydrogen atom treinsfer mechanisms. The isotopic 

substitution experiments"'-̂ '-̂  show that the cross sections for nominal 

proton and hydrogen atom transfer reactions are similar. This observation 

is interpreted to be the result of rapid charge equilibrium between the 

reactants H2'*' and «2, prior to Hg* formation. The + H channel is 
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believed to proceed with a direct mechanism.̂ ' 12-14,47-49,56 ̂  is 

increased, the cross section for formation decreases rapidly with 

concomitant increase in the cross section for charge transfer, indicating 

that the Hg"*" + H and charge transfer channels are conçeting processes. At 

Eg jjj >5 eV, charge transfer, vAiich is mainly governed by long range 

interactions, becomes the dominant product channel. In addition to the 

+ K and charge transfer channels, the formation of H"*" + H + H2 is also a 

viable process ;Aiere is greater than the dissociation energy of 

In generail, the cross section for the collision induced dissociation 

channel is much smaller"̂ than those for the Hg'"' + H and charge transfer 

channels. 

Recently, several reliable theoretical calculations on the H2"*" + ̂ 2 

system have been reported. Stine and Muckerman have applied a 

variant̂ ® of the trajectory surface hopping (TSH) method̂  ̂on valence 

bond diatcanic-in-molecules (DIM) potential energy surfaces and have carried 

out extensive calculationŝ ' on the H2'̂ (VQ'=0,3,6;Ji=2) + H2(VQ"»0;J2"l) 

system at Ê , «0.25, 0.5, 1.0, 3.0, and 5.0 eV. Ihe TSH model has been 

found to be successful in predicting absolute total cross sections for the 

reaction H"*" 4 D2*̂  ̂Ccrsbining the quasiclassicsl trajectory approach =ind a 

newly developed Fourier transfonn sethod, Eaker and Schatẑ  ̂have 

calculated cross sections for the Ho"*" + H channel at £„ ̂ . <1 eV with an 

ençhasis on the product rotational and vibrational distributions. 

State-to-state cross sections for the ¥.2̂  + K2 charge transfer interactions 

have been calculated by Lee and DePristô ® for E„ _ >8 eV usina the 
•' C.IU.— 

semiclassical energy conserving trajectory (SECT) formulation. 
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As a model system, it is inçortant to observe quantitative agreement 

between experimental measurements and theoretical predictions on the H2''" + 

H2 system. Detailed state-selected crcss-secticnal data for the K2''' + H? 

charge transfer reaction over a wide range have been obtained 

recently by Liao, Liao, and Ng.̂ '̂  The vibrational state distributions for 

the H2 product ions resulting from the charge transfer collisions between 

K2"'" {vq'=0 or 1) and K2 (vq"=0) at Eg 2̂—16 eV have been de te rmzneu by 

Liao and co-workers.̂ '̂  ̂The results of these experiments have been found 

to be in satisfactory agreement with the SECT theoretical predictions of 

Lee and DePristo.̂ ® 

The first state-selected experiment on the reaction 

H2+(vo') + H2(vo"=0) —> + H (1) 

was performed by Chupka, Russell, and Refaey.̂  ̂Vibrational state-selected 

total cross sections, ̂ (VQ'), for reaction (1) at Ê , <1 eV éilso were 

measured by Koyano and Tanaka® and van Pijkeren et al.̂  using the photoion-

photoelectron coincidence technique. In all these experiments, both 

phûtûionizatiori and reaction took place in a single gas cell. Due to a 

continuous potential drop across the gas cell, the collision energy was 

ill-defined. Cross sections thus obtained are phenomenological cross 

sections and represent velocity averages over the microscopic cross 

sections. In order to coû$>are experimental results with theoretical 

r>r»e ar\r>T-nT>r"4 r»r\nî ro?-e*5mf r\V»(on/̂ Tnâr»rNli 

microscopic cross sections is necessary. However, there are severe 
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limitations on the accuracy to which microscopic cross sections can be 

derived by these means. 

Recently, Anderson st al.̂  combined the photoionization and the guide 

beam technique®̂  and measured the microscopic total cross sections for 

several isotopic H2"'' + H2 reactions for VQ'=0-4 over the range of 

0.23-6.1 eV. However, because of the high intensity of background 

produced at the photoionization source, they were not able to study 

reaction (1). 

In an effort to obtain accurate microscopic state-selected total 

cross sections for reaction (1) over a wide Eg range, we have developed 

a new tandem photoionization mass spectrometer. The experimental setup is 

similar to that used by Anderson et al.,̂  except that a quadrupole mass 

filter is used to reject background formed at the photoionization 

region. The experimental results at Ê  =0.04-15 eV are presented here and 

conçared with previous experimental and theoretical findings. 
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EXPERIMENTAL 

The apparatus essentially consists of a Q.2ni vacuum ultraviolet 

monochroinator (McPherson 234), a discharge lanç, a tungsten photoelectric 

VUV light detector, two quadrupole mass filters (QMF), a radio frequency 

(rf) octopole ion guide, a reaction gas cell, a supersonic free jet 

production system, and a variant of the Daly scintillation ion detector. 

64 

The detailed cross-sectional view of the tandem photoionization mass 

spectrometer, showing the differential pumping arrangement, is depicted in 

Fig. 1. The vacuum system is partitioned into four chambers; the 

photoionization chamber (1), the chamber (6), the rf octopole chamber 

(7), and the detector chamber (13). These chambers are connected only 

through small apertures. Each of these chambers is evacuated by a separate 

punçing system \Aich is described below. 

The reactant ions are prepared by photoionization of a H2 free 

jet produced by supersonic expansion through a quartz nozzle (2) at a 

stagnation pressure of ̂ 00 Torr. The nozzle has a diameter of -SO/an and is 

positioned ~1 cm from tiie photoionization region. A quartz nozzle is used 

in order to reduce the disturbance on the electric field in the 

photoionization region. The ion exit aperture of the photoionization region 

is covered by a high (90%) transmission gold grid to minimize the field 

penetration into the photoionization region from the adjacent focusing ion 

lenses. The photoionization chazber, pusçed b̂ ' a freon-trapped 6 in, 

diffusion punçj (DP), maintains a pressure of ~1.5X10~̂  Torr during the 
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Figure 1. Cross-îsectional view of the tandem photoionization mass spectrometer. (1) 

Pliotoiohizatiori. region, (2) quartz nozzle, (3) to freon-trap{)ed 6 in. diffusion 

jjiimp (DP), (4) the first cjuadrupole mass filter (QMF), (5) to liquid-nitrogen 

(1J>12)-trapped 6 in, DP, (6) the first QMF chamber, (7) the ratio frequency (rf) 

octopole ion guide chambtir, (8) the reaction gas cell, (9) tlie rf octopole ion 

guide, (10) au>:iliary molecular beam port, (11) to LN̂ -trapped 4 in, DP, (12) the 

second QMF, (121) detector chamber, (14) to LN2-trappe<l 2 in. DP, (15) 

photomultiplier tul>e, (1(5) plastic scintillator windmv, (17) aluminum ion target 
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experiment. 

The reactant H2''' ions, together with Hg"'" background ions formed at 

the photoionization region,- are extracted perpendicular to the H2 beam. By 

tuning the first QMF (4) to the mass of H2''' {m/z=2), the Hj"*" background is 

conpletely rejected and a pure reactant H2''" beam is selected to enter the 

rf octopole ion guide (9). The first QMF chamber is punçed by a liquid-

nitrogen (LN2) trapped 6 in. DP and has a pressure of ~2xlO~® Torr. 

The rf octopole ion guide is constructed of eight molybdenum rods, 

with a diameter of 1.59 mm and a length of 17 cm, symmetrically spaced in a 

circle of 1 cm diameter. Since the trapping efficiency of a given ion in 

t h e  o c t o p o l e  i o n  g u i d e  d e p e n d s  o n  t h e  a p p l i e d  r f  a n d  r f  p e e i k  v o l t a g e  ( V Q ) ,  

it is inçortant to be able to maximize the collection efficiency of a 

product ion by varying the rf and VQ. The rf power source used here 

consists of a signal generator and an rf linear power amplifier. Using an 

inçedance matching network, the rf in the range of 5-24 MHz is applied to 

the octopole ion guide. The maximum value of VG, which can be delivered by 

the rf power source, depends on the rf. For the low mass Hj"*" and K2''" ions, 

an rf of ~23 MHz is used, and the value for VQ can be varied up to ~30C V. 

1 O A TT 4F 4 +"3I M OOS* I AF F Î KTC ^ w V AO ^ A W WW W W M M « 

H2'*' and The collection efficiency is carefully cptirdzed at each S,, 

except at =0.25 eV, vriiere a collection efficiency of 98.5% is 

obtained. 

The 7 Cm long reaction gas cell (9) is positioned at the center of 

the ion guide. The reaction gas cell and the octopole are connected to the 

same dc potential. We find experimentally that the collision energy can be 
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altered due to field penetration from the gas cell into the octopole ion 

guide v̂ en the gas cell and the octopole are at different dc potentials. 

Since the sections of the octopole ion guide outside of the reaction 

gas cell are fully exposed to the punping system of the octopole ion guide 

chamber, the density of reactant H2 in these regions is nearly two orders 

of magnitude lower than that of the reaction gas cells. Thus, the intensity 

of formed along the octopole ion guide outside of the reaction gas cell 

is expected to be negligibly small. 

ïTie electrostatic field between the ion lenses at both ends of the 

octopole ion guide is usually set up such that the product ions formed in 

the reaction gas cell are directed toward the second @1? (12) v̂ ere the 

intensities of H2'*' and are measured. In such an arrangement, we 

estimate that the error on the collision energy due to field penetration to 

the reaction gas cell from the focusing ion lenses is estimated to be less 

than 0.1 eV. The lower collection efficiency observed at «0.25 eV is 

attributed to the fact that some of the backward scattered Hg''' ions are 

lost because an effective retarding voltage cannot be applied to ion lens 

at the entrance of the octopole ion guide. 

constructed of four stainless steel rcxis,- have a diameter of 1.9 cm and a 

length of 21 cm, and are symmetrically held in a circle of 3.55 cm 

diameter. The resolution of the second (gIF is set to give flat-top 

structures for the nsss 2 and mass 3 peaks. Such a resolution setting 

ensures that the transmission factors for the H2''' and K̂ "*" are the same. 
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The rf octopole ion guide chamber is evacuated by a 4 in. m2-trapped 

DP, has a base pressure of ~1X10~̂  Torr, and is maintained at ~2X10~® Torr 

during the experiment. The pressure of H2 in the reaction gas cell is 

~1X10~'̂  Torr and is monitored with a Baratron manometer (MKS model 315 HS-

1 ) .  

Previous experimental studies show that efvg') for reaction (1) at 

low collision energies are large. It is expected that low energy ions 

produced by charge transfer may further react with H2 in the reaction gas 

cell to give background At  ̂<5 eV, we find that the Kj"*" product 

intensity is linearly proportional to the H2 gas cell pressure in the range 

of (0.1-2.5)X10~̂  Torr indicating that H2''" ion intensities produced by 

secondary processes are not significant in conparison with those formed by 

the primary reaction. The intensity of Hg"*" clearly deviated from linearity 

only T̂ en the H2 gas cell pressures are >3X10"'̂  Torr. Within experimental 

uncertainties, the Hg"*" ion intensities observed at eV can also be 

fitted by a straight line in the H2 gas cell pressure range of (0.2-2)Xl0~̂  

Torr. Since the Hg"*" ion intensities observed at eV and at K2 gas 

cell pressures <5X10~̂  Torr are very lew and have high uncertainties, the 

linear fits at 5̂  ̂, >6 eV may not be unique ̂ 

In order to obtain estimates of the error bounds for CT(VQ'); we have 

replaced H2 by D2 in the octopole gas cell and measured the formation of 

as H2"'" ions enter the reaction gas cell at various . ûhe Dg* are 

most likely formed b̂ »- the secondary reaction D2''' + D2 in the reaction gas 

cell subsequent to the charge transfer reaction between H2"̂  and D2. The 

fact that can be distinguished from H2D''' and 02»̂  allows realistic 
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estimates for the extent of secondary reactions taking place in the 

reaction gas cell at different  ̂. Based on these measurements, we 

estimate that the contribution by secondary reactions to the observed 

intensity of Hj"*" is <10% at Eg Q_<l eV and up to -40% at -15 eV. The 

values for ff(vQ') at eV measured here possibly represent upper 

bounds. Values for CT(VQ') at 8, 10 ,12, and 15 eV may be 25%-40% 

too high. 

The vibrational dependences for a(vQ') measured at high (>1 eV) 

are also expected to be affected by secondary gas cell reactions. At the 

Ê  range of 1-5 eV, we find that the vibrational dependence of <j(vg'), 

deduced from the photoionization efficiency (PIE) spectra of Hg*, is 

independent of H2 gas cell pressure in the range of (0.2-2)Xl0~'̂  Torr. 

Figures 2(a), 2(b), and 2(c) show the PIE spectra for observed at 

Eg -4 eV and H2 gas cell pressures of 0.2, 1, and 2.3X10"'̂  Torr, 

respectively. With the exception of minor details, v̂ ich are attributable 

to poor counting statistics at low H2 gas cell pressures, the spectra shown 

in Fig. 2(a)-2(c) are essentially superimposable. Due to the very low 

signals observed for at „ >6 eV and low gas cell pressures it is not 

feasible to examine the H2 gas cell pressure effect on tiié vibrational 

energy dependence of CTIVQM at H2 gas cell pressures below 5X10"- Torr. The 

relative values for C(VQ') at the Ê  range of 6-15 eV vary by -10% when 

the H2 gas cell pressure is changed from 0.5 to 2X10"̂  Torr. These 

observations suggest that secondary reactions have a lesser effect on the 

vibrational energy dependences of ̂ (VQ') than on the absolute values for 

cr(vQ'). If the cross sections for charge transfer and H,"*" formation at a 
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Figure 2. PIE curve for the Hg product ions formed at = 4 eV and at 

H*5 yoS Cell pressures of (a) 2 x 1,0 ̂  Torr̂  (b) 1 x 10 Terr, 

and (c) 0.2 x ICT* Torr 
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given have similar vibrational dependences, the errors for the 

relative cross sections of reaction (1) will be suppressed. We believe the 

relative standard deviations for the relative values of <y(vQ').- vg'«0-4.. at 

Eç, jjj ranges 1-5 and 6-15 eV contributed by secondary reactions in the gas 

cell are <10% and <20%, respectively. 

The îT*" ion intensities observed at the Ê  ̂  ̂range of interest here 

are nearly within the noise level and are significantly lower than the 

intensities for This observation is consistent with the previous 

measurementŝ  that the cross section for the collision induced dissociation 

channel is <1.5 Â̂ . The low H"*" intensities in conçarison to those for Hg""" 

also eliminate the possibility for the secondary collisional dissociation 

of product Hj"*" in the reaction gas cell as a source of error for O(VQ'). 

The ion detector chamber is punçed by a I2Î2-trapped 2 in. DP and has 

a pressure of ~1X10~̂  Torr. The ion detector is a variant of the Daly 

scintillation ion detector®̂ "®̂  and consists of a photonailtiplier tube 

(15), a scintillator window (16), and a polished stainless steel box (17). 

The ion entrance aperture of the stainless steel box is covered by a 90% 

transmission gold grid. During the experiment, the aluminum ion target and 

the stainless steel box assembly is floated at -20 kV, while the 

photomultiplier holder and the scintillator vindĉ  are held at the ground 

potential. In this arrangement, the observed dark noise of the ion detector 

is ~1 count/s. Using a different voltage arrangement, the scintillating 

detector can detect negative ions. 

The grating enroloyed in this study is a Jobin Yvon 1200 lines/am MgF2 

coated holographic grating (J-20 VUV) blazed at 1600 A. Using -100 (M. 
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entrance and exit slits, the wavelength resolution achieved is 4.5 A 

(FWHM), similar to that used by Anderson et al.̂  The tungsten photoelectric 

detector is used in the electron loss mode to transfer the photon flux into 

current v̂ ich is then measured by a picoammeter (Keithley model 602). The 

analogue output of the picoammeter is converted into digital signals by a 

voltage-to-frequency converter and the digital signals are then counted. 

%e PIE curves presented in this experiment have been corrected for the 

photoelectric yield of tungsten.®® The design of the discharge lanç and the 

differential pumping arrangement of the windcwless light source 

monochromator assembly are the same as described in Refs. 68. The helium 

Hopfield continuum is used as the light source. The observed intensity of 

reactant H2"'" ion is ~10̂  counts/s. 

The laboratory collision energy is defined by the difference 

in potential between the photoionization region and the reaction gas cell. 

Due to the finite height (~4 mm) of the photon beam in the photoionization 

region and the finite repeller field applied to the repeller, the reactant 

K2''' beam arriving at the reaction gas cell has a spread in kinetic energy. 

The kinetic energy resolution {ÙE) is proportional to the potential 

difference of the repellers (ÔV) and can be determined by the retarded 

field method. Figures 3(a) and 3(b) show the reactant H2''" ion beam 

intensities measured as a function of the retarding voltage applied to the 

octopoie ion guide at ûV=2 and 1 v, respectively. The ÔE value for av=2 is 

+0.6 eV and that for ÛV=1 is ±0.3 eV. At E2g^=10-30 eV.. ûV is set at 1.0 V 

in this experiment. Since the ÛV values used are <0.4V at Eî <10 eV, the 

corresponding ûE values are expected to be ̂ 0.12 eV. The most serious 
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Figure 3. Retarding potential energy curves for the reactant ion bsa 

i.a; rotentiai airrerence between the repsller ÛV =2.0 V. (b) 

AV = 1.0 V 



www.manaraa.com

24 

factor, which affects AE in an ion beam gas cell experiment such as this, 

is due to the random thermal motion of the neutral H2 reactant molecules in 

the gas cell. This effect has been discussed in detail recently.m 

order to eliminate the random thermal motion or the Doppler broadening 

effect, it is necessary to replace the reaction gas cell with a siçersonic 

molecular beam. A molecular beam can be introduced in the octopole ion 

guide in the future bi' coupling a molecular beam source to the auxiliary 

molecular beam port (10). However, due to the unknown beam density at the 

reaction region, the molecular beam method is only suitable for relative 

cross section measurements. 

The data acquisition and operation of the apparatus are controlled by 

minicomputer (LSIll/23) and are fully automatic. Ihe results presented here 

are based on at least three independent measurements at each . 
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RESULTS AND DISCUSSION 

Figure 4 ccsçares the PIS curves for the raactant K̂ "*" w_+ 

ions obtained at Eg Q̂ =0.04-15 eV. The PIE curves for H2''" are obtained \dien 

the reaction gas cell is ençty. Since the relative standard deviations for 

these PIE data are less than 2%, the PIE data for H2'̂  and Hg"*" are connected 

by solid or dashed lines, respectively. The FIEs of the product Hj"*" and 

reactant H2''" ions in the region of 790-805 Â, which corresponds to the 

formation of reactant in the ground vibrational state, are normalized 

to have the same values. The PIE spectrum for Hj"*" at thermal energy 

(Ec_jj_=0.04 eV) is obtained by measuring the PIE for Hg""" formed at the 

photoionization region with the repeller voltage in the photoionization 

region maintained at a negligibly small value (<0.05 V). These conçarisons 

clearly show that as VQ' is increased ̂ (VQ') for reaction (1) at 

Eĉ jjj.«0.04, 0.25, 0.46, 10, and 15 eV are inhibited by vibrational 

excitations of the reactant H2"'' while those at 2, 3, and 5 eV are 

enhanced. 

The work of Chupka and co-workers-'"̂ - shows that because of the 

dominance of autoionization with ûv=-l, H2 ions produced by autoionization 

are formed predominantly in the highest possible vibrational state. The 

wavelength resolution used in this study is not sufficient to resolve the 

detailed autoionization structure. Thus, vibrational distribution of H2''' 

formed in a given wavelength interval depends on the contributions by 

1 4 4 TT̂ «! •sr* V* 4  ̂ OTTT 

spectnim for H2 obtained by Dehmer and Chupka, Anderson et al. have 
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Figure 4. The comparisons of PIE curves for the S3 product ions ( ) 

formed at the range of -0.04-15 eV with that for the 

H^CVQ) reactant ion ( ) 
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estimated the ratio of ̂ 2* produced by direct photoionization to that 

produced by autoionization. This ratio, together with the assumption that 

the vibrational distributions of H2'*" fonned by direct photoionization are 

governed by Franck-Condon factors fcr transitions from H2(X̂ Zg'̂ ,v) —> 

H2'*"(X̂ Eg''",VQ'), allows Anderson et al. to deduce the vibrational 

distributions of H2"'' resulting from photoionization in the wavelength 

region (745-805 A) corresponding to the first five vibrational intervals. 

Since the wavelength resolution used here is similar to that employed by 

Anderson et al., the same procedures and vibrational distributions of 

reactant H2'*' as reported by Anderson et al.̂  are used to deconvolute the 

experimental data.̂  ̂

The previous studies of reaction (1) have been limited to <1 eV. 

Figures 5(a)-5(f) show the relative total cross sections, ff(VQ')/CT(VQ'=0), 

where VQ'=0-4, at =0.04, 0.25, 0.46, 0.5, 0.75, and 1.0 eV, deduced in 

this study. The experimental results obtained by Koyano and Tanaka and van 

Pijkeren et al.̂  are included in Figs. 5(a), 5(c), and 5(f). The relative 

cross sections at thermal energy reported hy van Pijkeren et al. are found 

to be in good agreement with those determined here [Fig. 5(a)], indicating 

that the vibrational distributions of %2̂  used in the deccnvoluticn are 

reliable. At  ̂=0.46 eV, the results of both Koyano and Tanaka, and this 

study, show vibrational inhibition on a(VQ'). Although the values for 

G(VQ')/a(VQ'==0), where VQ'=1-3, obtained by Koyano and Tanaka appear to be 

lower than those deduced here [Fig. 5(c)}, the two results are within 

experimental uncertainties. In a single chamber experiinent,-®'̂  ̂the 

uncertainty in collision energy ÛE becomes greater as E,, „ is increased. 
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Figure 5. Relative total cross sections a(vQ)/a(vQ=0) for reaction (1) at = 0.04-1 eV 

plotted as a function of vibrational quantum number VQ. (•) This work; (x) meëin 

values of proton and atom transfer (Ref. 7); (o) Ref. 1; (û) Réf. 47; (Q) Ref. 45; 

(+) Ref. 8 
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In Fig- 5(f), the experimental results at an average of 0.93 eV 

obtained by Koyano and Taneika are conpared to those at g, » 1.0 eV found 

in the present stud}% The difference in collision energy of the two sets of 

results is within the uncertainties in of both experiments. The 

results of Koyano and Tanarika show that the values for a(vQ'), v̂ ere Vq'"2 

emd 3, are slightly lower than that for ff(vQ'=0), contrary to the 

observation of this experiment. A recent state-selected study using the 

crossed ion-neutral beam method̂  shows qualitatively that vibrational 

excitations of the reactant H2''' ions have a negligible effect on a(VQ') at 

Eg «1 eV. Since the collection efficiency for Hg"*" is poor, their results 

are less accurate than those reported here. 

Absolute cross sections for the reactions 

H2+(vo') + D2 —> D2H+ + H (2) 

D2+(vo') + H2 —> 028̂  + H (3) 

have been measured by Anderson et al.̂  The formation of D2̂  by reaction 

(2) and (3) are referred to as the nominal proton and atom transfer 

reactions, respectively. If an electron hops repeatedly between ̂ 2"̂  and H2 

in the reaction channel prior to the formation of value 

for c(vQ') of reaction (1) should be in accord with the mean value of the 

total cross sections for reaction (2) and (3). We have obtained the mean 

values of the total cross sections for the nominal proton and atom transfer 

reactions by scaling the experimental results plotted in Fig. 5 of Re£. 7. 

Hhe mean values for C'VQ')/(;(VQ'=0) , where VQ'=0-4, at Sj,_jjĵ =0.23, 0.43, 
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0.77, and 1.1 eV of proton and atom transfers are in good agreement with 

those determined in this experiment, as shown in Figs. 5(b), 5(c), 5(e), 

and 5(f), respectively. This observation gives strong support for the rapid 

charge hopping interpretation. 

For Eg jjj_<l eV, the results of two theoretical calculations are 

available to compare with the experimental data. Trajectory calculations by 

Stine and Kuckennan'̂ '̂̂ ® and by Eaker and Schatẑ  ̂provide only oivg'), 

where VQ'=0 and 3, for reaction (1). Their results, including the standard 

deviations, are shown in Figs. 5(b), 5(c), 5(d), and 5(f). The fact that 

only a finite number of trajectories were sançled in their calculations 

causes large uncertainties in the theoretical results. Teiking into account 

the uncertainties of the calculated and experimental values, the 

theoretical predictions of Stine and Muckerman at Eq_nj*0.25, 0.5, and 1.0 

eV are in agreement with the experimental measurements. At Ec Q -0.46 eV, 

the calculations of Eaker and Schatz predict vibration enhancement for 

a(vQ'), v̂ ereas the experimental values show the opposite trend. Their 

value of 1.2̂  for e(Vg'-3)/e(Vg'«0) at Ê , _ «0.93 eV is higher than the 

experimental value of 1.12. 

The experimental values for ff(vn')/ff(vQ'*0), where VQ'=0-4, measured 

over the  ̂range of 2-15 eV are plotted in Figs. 6(a)-6(i). Similar to 

the observation in Fig. 4, vibrational enhancement for ̂ (VQ') reaches a 

ûsxinasa near E_ _ =3 sV. As EL _ is further increased in the range of 3-15 

eV the values for ff(vn'>0) decrease steadily with respect to ̂ (VQ'-O). At 

Eg jjj =12 and 15 eV, <T(VQ') is found to decrease monotonically as a function 

of VQ'. Tîie relative values for C:(VQ'), VQ'=Q and 3, at -3 and 5 eV,-
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obtained by the TSH calculations of Stine and Muckennan also agree with the 

experimental findings [Figs. 6(b) and 6(d)]. 

The osan values for ?{Vf,')/v:(vq=0) of proton and atom transfers at 

Eg jjj «2.1, 2.77, 4.1, 5.1, and 6.1 eV obtained by Anderson et al. are also 

included in Figs. 6(a)-6(e) to compare with the results observed at 

®c.m =2,3,4,5, and 6 eV in this study. The relative values for ̂ (VQ') of 

reaction (1) and those for the mean cross sections of reactions (2) and (3) 

exhibit similar functional dependences on VQ'. Nevertheless, the two sets 

of data show better agreement at Ec_Q̂ =0.25-l eV [Figs. 5(b), 5(c), 5(e)_, 

and 5(f)] than at Eg_Q,_=2-6 eV. The collision time of a scattering event is 

expected to be shorter when the collision takes place at a higher collision 

energy. Since a finite length of time is needed for an electron to junp 

from H2 to H2''" in the E2'̂ +̂ 2 collision, the shorter collision time at high 

will limit the number of electron junps between H2 and H2"*" at the 

entrance channel. The fact that charge equilibrium cannot be maintained at 

high Eg jjj at the entrance channel prior to the formation of Hg""" is 

probably the primary reason for the different vibrational dependences 

observed for c(vn')/o(vn'=0) of reaction (1) and the relative mean cross 

section for reactions (2) aiid (3). The results of Anderson et al. show that 

the cross section for reaction (2) and (3) are similar and have sindlar 

vibrational dependences at low , whereas at high Ê  ; the cross 

sections for atom and proton transfers are quite different. The behaviors 

of the cross sections for atom and proton transfers at various ĝ  can 

also be rationalized by the charge hopping argument presented above. 
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%e relative vibrational state-selected total cross sections for the 

2̂̂ +82 charge transfer reaction at 2,, ̂  ̂=2,4,8,and 16 eV obtained by Liao, 

LiaOf and Nĝ  are included in Figs. 6(a). 6(c), 6(f), and 6(i), 

respectively. The vibrational enhancements for the cross sections of charge 

transfer at Eg=2,4,and 8 eV are greater than those obsRrved for H3++H 

channel. The vibrational dependence of the E2'*'+'̂ 2 charge transfer reaction 

at these collision energies is in qualitative agreement with the Franck-

Condon factors for the ionization transitions H2 (X̂ Zg"*", v=0) -» H2"'"(X̂ Eg"'", 

VG'«0-4), indicative of a predominantly long range electron junç mechanism. 

The Franck-Condon factor patterns are not observed for the vibrational 

dependence of a(VQ')for reaction (1). It is interesting to find that the 

relative cross section at VQ'>1 for both charge transfer and Hg'*' formation 

decrease with respect to that at vg'>=0 as Eg is increased in the range of 

4-15 eV. 

The TSE calculation reveals that the critical inçact parameter for 

charge transfer is larger than that for formation, and is relatively 

independent of collision energy.The latter decreases with increasing 

Eg jjj . Eaker and Schats'̂  ̂have given a rationalization for the observed 

energy range (Sg Q, <3 sV). They note that frcrs their trajectory results,-

the probability of nonreactive charge transfer increases as vg' is 

increased, but at the same time the maximum inçact parameter leading to 

formation is larger. The vibration inhibitions for ?(VQ') obser/ed at 

Eg _ <0.5 eV indicate that the first effect is more iEçortant. In the 

intermediate Eg range of 1-3 eV, the vibrational enhancements for ofvg' ) 

can be attributed to the dominance of the second effect. An increase in 
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Figure 6. Relative total cross sections c(vQ)/ff(vQ=0) for reaction (1) at 

"c.m. 2-15 eV plotted as a function of vibrational quantum 

number VQ. (e) ïtiis work; (x) zssn values of proton and atom 

transfer (Ref. 7); (o) relative total cross sections for the 

52+ + H2 charge transfer reaction (Ref. 3); it) Rsf. 47 
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reagent vibrational excitation is expected to favor Hg"*" formation by 

providing more translational energy for the products to overcome the 

product centrifugal barriers. For a direct proton transfer reaction, the 

vibrational excitations of the reactant H2''" ions should facilitate the H2"'" 

bond breaking and enhance the formation of 

At >2 eV, collision induced dissociation becomes energetically 

allowed. These processes have the major contribution from low inoact 

parameter collisions. The most recent quasiclassical trajectory calculation 

of the (K2+D2)''' system by Eaker and Muzykâ '̂  shews that collision induced 

dissociations for inçact parameter <1 bohr often are caused by 

perpendicular collisions of the diatoms. Their calculation also reveals 

that a significant amount of collision induced dissociations occurs for 

larger impact parameter collisions which involve the further dissociation 

of highly rotational excited triatom. They comment that the fall off of 

vibrational enhancement for formation form 4 eV to higher is due 

to the increase in collision induced dissociation upon vibrational 

excitation of H2̂ . 

The SECT theoretical calculations of Lee and DePristo.-̂ ® which have 

been shown to be in satisfactory agreement with the experimental results. ̂  

predict a similar behavior for the charge transfer cross sections over the 

Eg range of 4-16 eV, i.e., the values for o(vQ'>0) decrease with respect 

to ff(vQ'=0)as is increased [Figs. 6(c)-6(i)j. Since the SECT 

calculations have not teiken into account the collision induced dissociation 

and channels, the observed decrease of the charge transfer cross 

sections for VQ-'>1 with respect to that for vg'=0 with increasing 

cannot be explained by the above argument. 
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The absolute value for C(VQ'-O) at a given is determined by the 

relation 

ff( vq '-0 )—( 1/nl ) Inf l-( i/ÎQ ) 1 (4) 

here, i is the intensity for product which has been corrected for 

background Hj"*" formed outside the reaction gas cell using the same 

procedures described in Ref. 61. IQ is the measured intensity of reactant 

vwien the reaction gas cell is eûçty; n and 1 represent the 

density of H2 in the reaction gas cell and the length of the gas cell, 

respectively. The measured values for (VQ'), V*0 and 3 over the range 

of 0.25-15 eV are plotted in Fig. 7. The absolute values for (VQ'«3) are 

obtained by scaling the values for (VQ'-O) using the corresponding relative 

cross sections for VQ'«0 and 3. Due to the poor relative kinetic energy 

resolution (ÛE/Ê ^̂ ĵ ) and the low reactant E2'*' ion intensity at very low 

®c.m. ' difficult to measure ff(vQ') with accuracy at Eg % <0.25 eV. 

Hie most difficult problem encountered in measuring ̂ (VQ') at very low 

Ê  „ is that some of the backward scattered Hg"*" ions cannot be redirected 

towards the detector because a sufficiently high retarding voltage cannot 

be applied to the ion lens at the entrance of the octopole ion guide. 

Table I summarizes values for a(vQ'), wiere VQ"«0 and 3, at the Ê .m. 

range of 0.25-5 eV, obtained by previous theoretical and experimental 

studies and cosçares them with those determined here. %e uncertainties for 

e(VQ') measured here have taken into account the estimated errors due to 

secondary gas cell reactions. The experimental and theoretical values for 

ĉ vq" I at Eg jjj "O.o and 1.0 eV are in good agreeinsnt. With the sxcsoticn of 



www.manaraa.com

37 

1 1 1 r T 1 1 r 

3̂  

(\j 
o< 

•>° 

6 

Ho(Vo) + H^(Vo=0)—H 

Experiment •• 

Theory: A vè = 0 

VO=0 
vô = 3 

Figure 7. Absolute vibrational-state-selected total cross sections O(VQ), 

Vg « 0 and 3, for reaction (1) plotted as a function of Sj, „ . 

Experiment (this work): (o) ff(vg=0); (o) C(VQ=3). Theory (Ref. 

47): (Û) cr(vn=0) 
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Table I. Total cross sections for tlie reaction (VQ = 0 or 3) + H2(VQ = 0) -» H3 + H 

O(VQ (A^) 

Experimental Theoretical 

0̂ This work Ref. gb Ref. 47 Ref. 45 ESC LGsd 

0.25 0 34.0 + 4.0 47.8 + 1.4 46.4 + 2.0 30.5 

3 32.3 + 4.0 • # 1  38.8 + 2.2 # # < 37.4 + 2.0 30.5 

0.5 0 26.6 + 2.0 24.3 + 1.5® 30.6 + 1.7 30.6 + 1.4® 30.6 + 1.4 21.5 

3 26.3 + 2.0 19.5 + 2.0® 26.7 + 1.7 33.7 + 1.4® 26.4 + 2.0 21.5 

1.0 0 17.4 + 1.5 

" 2.5 
16.9 + 1.5̂  16.0 + 1.1 18.3 + 0.8̂  16.6 + 1.1 15.2 

3 19.3 + 1-5 

2.5 
16.2 + i.sf 18.8 + 1.7 23.0 + 0.8̂  18.5 + 1.4 15.2 

3.0 0 7.5 + 0.8 

1.6 
5.8 + 0.8 6.5 + 0.6 8.8 

3 11.8 + 0.8 

1.6 
... 9.3 + 1.1 • . , 9.6 + 0.8 8.8 

5.0 0 6.1 + 0.6 

2.0 
• • ' 

3.9 + 0.6 • • < 3.7 + 0.3 6.8 

3 6.3 + 0.6 

2.0 
• • ' 

5.3 + 0.8 • . 4 5.06 + 0.6 6.8 
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Ĉenter-of-mass collision energy. 

Ĉhese values are obtained by scaling the values plotted in Fig.7 of Ref. 

"̂ Resultj; of the TSH calculation obtained by Eaker ctnd Schatz (Ref. 74). 

"̂ Values calculated using the Langevin-Gioumousis-Stevens Model. 

V̂alues for Ê . ̂  = 0.46 eV. 

V̂alues for K̂ .m. ~ 0-93 eV. 
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ff(vQ') at Ej, jj, =0.25 eV, the TSH cross sections obtained by Stine and 

Muckennan̂  ̂are consistent with the experimental cross sections of this 

study. The fact that the experimental values for ff(vQ') are in good accord 

with the predictions of the LGS model indicates that the dynamics of 

reaction (1) are governed mainly by the charge induced-dipole interaction. 

In the quasiclassical trajectory calculation of Eaker and Schatẑ  ̂

the surface hopping part of the dynamics is treated by using an 

approximation to the usual TSH model. They assumed that the trajectories 

follow the diabetic surfaces up to a particular intermolecular separation 

and then the ground adiabatic surfaces thereafter. The DIM surface used by 

Eaker and Schatz is similar to that of Stine and Muckennan but has a 

different parameterization of the diatomic potentials. Very recently, Eaker 

and Schatẑ  ̂have reinvestigated reaction (1) using the same TSH model used 

by Stine and Muckennan. The results of their recent TSH calculation, which 

are also listed in Table I, are found to be in good agreement with those 

obtained by Stine and Kuckerman and with the experimental results of this 

study. Although it has been shown that the previous quasiclassical 

trajectory calculation can account for the general features of the 

experimental cross-sectional data,*4,45 detailed features can be 

predicted only by the TSH model which includes nonadiabatic surface hopping 

throughout the reaction. 



www.manaraa.com

41 

CONCLUSIONS 

We have developed a new tandem photoionization mass spectrometer for 

state-selected studies of ion-molecule reactions. This apparatus, which 

combines the merits of photoionization, rf octopole ion guide, and tandem 

mass spectronfâtric techniques, is capable of performing absolute state-

selected total cross section measurements on sinçle as well as more 

complicated ion-molecule reactions over a wide kinetic energy range. Using 

this apparatus, we have measured the absolute state-selected microscopic 

total cross sections for reaction (1) over the range of 0.25-15 eV. 

With the exception at «0.25eV, the absolute values for (J(VQ'«0) are in 

good accord with the semiclassical trajectory calculations of Stine and 

Muckerman, and Eaker and Schatz. However, the measured relative values for 

(Y{VQ'=0) and (T(VQ'=3) are found to be in better agreement with the results 

of the TSH calculations of Stine and Muckerman, Wiich include nonadiabatic 

surface hopping throughout the reaction. The kinetic energy dependence of 

C(VQ-') at the Eg range of 0.25-5 eV is consistent with the prediction of 

the LGS model, confinsing the previous experimental and theoretical 

findings. This suggests that the dynamics of reaction (1) at low E_ is 

zsinly governed by the charge induced-dipole interaction. This experiment, 

together with the state-selected charge transfer study of Liao, Liao, and 

Ng provides detailed experimental cross-sectional data for a more thorough 

conçarison with theoretical calculations of the reaction dynamics of H2̂ +H2 

in the future. 
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SECTIW II. 

A VIBRATKmL STATE-SELECTED STUDY OF THE REACTION 

Ar̂ (' 1/2̂  N2(X,V=0) —> ATĈ Sq) + N2'*'(X,v') 

Introduction 

Partly due to the early controversy in the rate constant ïûeasureinents 

for the electron transfer reaction Ar"*" + N2,̂ ~̂  the electron transfer 

system [Ar + N2]''" has been the focus of many experimental studieŝ ®"̂  ̂in 

the last few years. The kinetic energy dependences of the rate coefficients 

for this system obtained in the flow drift tube experiment of Lindinger et 

al.and the selected ion flow tube study of Smith and Adamŝ ® reveal that 

the poor agreement observed in early rate constant measurements for the 

electron transfer reaction of Ar"̂  + N2 can be attributed to the strong 

kinetic energy dependence of the rate coefficient, the high reactivity of 

the reverse reactions -Î- Ar, and the buffer gas effect. Itie recent 

study of Federer et çhnws that internal heating of reactant ions can 

result froa collisions of buffer gas with reactant ions at high drift 

velocities in flow drift tube environments. 

The energy level diagram for the [Ar + system is shown in Fig. 

1. lîie formation of N2'''(X,v'=0) by the reaction 

Ar'''(-P3/2) + N2'̂ (X,v=0) —> Ari-Sg) + N̂ îX/v') (i) 
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Figure 1. Siergy level diagram of the Ar'''(̂ P3̂ ) + N2(X,v), Ar'''(̂ P2/2̂  

K!2(X,V), Ar'-Sg) + 

the asvwDtotic limits 

K!2(X,V), Àr(-SQ) + , ajid Ar(-̂ Srj) + ÎÏJCA,'/' 
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is exothermic by 0.179 eV, while the production of N2"'"(X,v'-l) is 

endothennic by 0.090 eV. By adding Ar downstream of the flow tube and 

monitoring the decline of N2'̂  product ions, the studies of Smith and 

Adamŝ ® and Lindinger et al.̂  ̂provide evidence that reaction (1) proceeds 

predominantly (>70%) via the endothennic channel to produce N2'''(X,v'«l) 

when it is energetically allowed. The Ar"*" reactant ions in both studies 

were prepared by electron ionization and the conçlete quenching of 

the flow tube was assumed. 

The relative spin-orbit-state-selected total cross sections, a-̂ /l 

1̂/2' reaction (1) and the reaction 

Ar+(2p̂ /2) + N2+(X,v=0) —> ArĈ Sp) + N2+(X,v') (2) 

respectively, have been measured over the center-of-mass collisional energy 

(Ej, J. ) range of 0.2-8 eV using the threshold photoelectron secondary ion 

coincidence method (TESICO) .̂ 2,20 experimental values for <̂ 1/2/̂ 3/2 

found to be less than one. However, the '̂ stios determined at 

«1.4 and 5.8 eV by Kato, Tanaka, and Koyanô  ̂are higher than those 

obtained by Guyon and Coverŝ ® by approximately a factor of two. This 

discrepancy is ascribed̂  ̂to the possible occurrence of collisional-induced 

fine structure mixings in the collision chamber prior to electron transfer. 

%e values for -1/2/-3/2 -educed by Liao, Xu, and Mĝ  ̂in a crossed ion-

neutral beam experinsnt are slightly lower than those obtained by Guyon and 

Covers, and support this speculation. The kinetic energy dependence for 

ĉ m cf 0.41-164.7 eV observed in the crossed ion-

1 Q 
neutral beam experiment also exhibits a broad minimum at =5.3 eV.-' 
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Friedrich et al.̂  ̂and Rockwood et al.̂ ® have measured the angular 

and kinetic energy distributions of N2''" ions formed by reaction (1) at 

Eg _ =1.1, 1.71 and 4.01 ev in a crossed-beam experiment. The Ar"*" reactant 

ions were prepared by a high pressure electron iirgact ion source and were 

assumed to be in the ̂ 3̂/2 state. At =1.71 and 4.01 eV, N2''" product 

ions were found to be scattered essentially in the neutral N2 beam 

direction with little momentum transfer. This observation is consistent 

with the findings of previous molecular beam experiments.The kinetic 

energy distributions of product N2''" indicate that N2''' ions are produced 

primarily in the v'=l state with rotational excitation. At =4.01 eV, 

the kinetic energy distribution of N2'̂  can also be interpreted to contain a 

lesser oooulation of No"*" in v'=2. However, at E_ _ =1.1 eV. Rockwood et 

al.lB reported pronounced anisotropic scattering of N2''' with considerable 

excitation into v'=2, 3, and 4 in addition to v'=l. Since their experiment 

shows that this phenomenon does not occur at higher and lower energies, 

they suggest that this observation resembles that reported for the reactive 

scattering of F + H2. The correlation of quantum-state specificity with 

angular scattering observed for HF formed by the reaction of F + H2 at a 

particular collision energy was interpreted to be the result of a quantum 
no_oi 

mechanical dynamic resonance. 

The vibrational and rotational state distributions for N2"'' resulting 

from reaction (1) at Ê  ̂  =0.24 eV have been measured by Huwel et al. " 

using the laser-induced fluorescence method. The Ar"'" reactant ions were 

produced in the flow of neutral buffer gas by Penning ionization from 

helium roetastable atoms. Excited Ar'''('̂ P-ĵ y2) ions initially formed were 
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assumed to be quickly relaxed by superelastic collisions with the electrons 

in flow tube plasma.In that experiment, the Ar"*" ions together with 

hcliuïû buffer gas wsrs allowed to expand through an orxfice at the end of 

the flow tube before intersecting a N2 beam effusing through a linear 

array. By extrapolating the ratio of the measured densities for N2+(v'=0) 

to that of N2̂ Xv'-l) at £̂ ,̂ ^̂ "0.24 eV. 

The wealth of experimental information for the [Ar + N2 j"*" electron 

transfer system, especially the state specific cross-sectional 

data,̂ 2'13,l3-±9 ;̂ ich have appeared in the literature in the last three 

years, has stimulated considerable theoretical work on this 

system.» 15-17,32-35 semi-classical multiple state studies of 

Spalburg, Los, and Gislason̂  ̂and Spalburg and Gislason̂  ̂have provided a 

great deal of insight into this system. The vibrational-state-selected 

cross sections calculated for the reverse of reaction (1) are found to be 

consistent with experimental values.1̂ ,15,21 broad minimum at 2̂  % =4.1 

eV for the kinetic energy dependence of c-; predicted by the theory 

is also in qualitative agreement with the results of the crossed ion-

neutreil beam experiment.lîie calculation of Spalburg and Gislason̂  ̂uses 

straight line trajectories and estimated potential energy surfaces (PES) 

for the [Ar + «2]" system, assumes that the electronic coupling 

potential̂ ® is independent of the molecular orientation, but ignores 

interactions due to the A state of N2 . Most recently, Archirel and Levy'" 

have conçjuted ab initio PES for the electronic states N2'''(X) + Ari-Sg), 

\  W • *  /  1C  \  J  *  *  J /  2 ^  \  t  XT  t  TT  \  t  A T »  A  J  —C • T *  V̂ /  ̂ \ &Q/, cuiu \ £ I T wiC ̂ xi.iccix. Gui\a 

approaches of Ar to Parlant and Gislason̂ '® have used these ab initio 
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PES in a more accurate semi-classical multi-state calculation and obtained 

state-to-state total cross sections for the electron transfer reactions of 

N2'̂ (X,v') + Ar(̂ SQ) and N2'''(A,v') + ATÎ SQ). The latter calculation has 

removed most of the approximations made in the previous study. As 

expected, the measured state-selected cross sectionŝ '̂Zl jq,. electron 

transfer reaction N2̂ XX,v') + Ar(̂ SQ) are in better agreement with those 

obtained by Parlant and Gislason. State-to-state cross sections for 

reactions (1) and (2) should be available from the consideration of 

microscopic reversibility. 

Although discrepancies still exist between various measurements and 

calculations, the [Ar + N2]''" electron transfer system has rapidly become 

one of the most thoroughly investigated atom-diatom reactions. Detailed 

state-to-state or final product state distribution measurements over a wide 

collisional energy range are expected to be valuable for further 

inçrovements in the theoretical calculation of this model system. We have 

measured the absolute values for a-, ̂  and a, at E -0.25-115.3 eV bv - - a/6 J./6 u.iu. 

using the tandem photoionization mass spectrometer. » 38 Experimental 

results are cosçared to the calculation of Spalburg and Gislason̂  ̂and 

previous experimental studies.Combining the absolute values for ̂ 3̂  

and the values for snd vibrational state distributions of 

N2'(X,V") determined using the crossed ion-neutral beam photoionization 

apparatus,absolute state-to-state total cross sections for reactions 

(1) and (2) have been determined at selected 5̂ .̂. 
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EXPERIMEMMi 

The tandem photoionization mass spectrometer used to measure the 

absolute values for and ̂ 1/2 the same design as that discussed in 

Section I. 

The reactant Ar"̂  were prepared by photoionization of an Ar supersonic 

beam at 783 or 770 Â. The wavelength resolution enployed was ~4,5 A (FWHM). 

The reactant Ar"*" ions were selected by the first before entering the rf 

octopole ion guide reaction cell in v̂ ich Ar"*" ions react with N2 according 

to reactions (1) and (2). The N2 gas cell pressure was ~7 x 10"̂  Torr. The 

intensities of reactant Ar"*" and product N2''" were selected by the second WF 

and then measured by a scintillation ion detector. The rf frequency and Vpp 

applied to the octopole were ~4 MHz and -280 V, respectively. The 

collection efficiency for product N2''' was carefully optimized at each 

ĉ.m. • Collection efficiencies of >99% were achieved for all . The 

ratios of the intensities for product N2"*' and reactant Ar"*" measured at 783 

A, I(N2̂ ,783 A)/I(Ar'*',7S3 A), for .6, 2.9, 10, 25, 100, and 280 eV 

are plotted as a function of Vpp in Fig. 2. The constant values observed 

for the ratios at Vpp>180 V indicate that total product ̂ 2"'' collections can 

be achieved at 7̂ =̂180 V. Depending on we found that as was 

increased beyond -400-500 volts, the transmission for the reacteuit Ar"*" ion 

beam through the rf octopole ion guide decreased significantly, concomitant 

with the decrease of product ̂ 2"̂  ion intensity. This observation is 

consistent with the expectation that at a given rf and a sufficiently high 

Vgg, the reactant ions can be deflected out of the octopole. In some cases. 



www.manaraa.com

Figure 2. The ratio of the intensities for product and reactant Ar̂  at = 0.6, 2.9, 

10, 15, 100, and 280 eV measured at 783 A, I(N2,783 A), plotted as a function of 

the radio frequency (rf) peak-to-peak voltage (Vpp) applied to the rf octopole gas 

cell. Tho measurements were made using the tandem photoionization mass sipectrometer 
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a decrease in the ratio at high Vpp was also observed, indicating that the 

trapping efficiencies for different ions depend on rf, Vpp, and ion energy, 

ïhe decrease of the ratio for Ei _v=280 eV in the V range of -350-500 XCLU 

volts is evident in Fig. 2. The value of 280 volts for Vpp is approximately 

at the center of the Vpp voltage region for which the values for I(N2*,783 

A) and I(Aẑ \783 A) were constant and at their highest values for a given 

l̂ab-

Figure 3 compares the PIE spectra for the reactant Ar"*" and product 

'̂2"̂  ion measured at  ̂=10.3 eV. îhe Ar"*" spectrum was obtained wiîen the 

gas cell was empty. The PIE data for the reactant and product ions were 

normalized to have the same values at 783 A. The PIE curve for N2''' at 

energies eibove the IE for Ar"'"(̂ P]̂ )̂ is lower than the corresponding PIE 

curve for Ar"*", indicating that 02/2 lower than 0̂ /2 at Ê  ̂  -IO.S eV. 

T h i s  o b s e r v a t i o n  i s  i n  a c c o r d  w i t h  r e s u l t s  r e p o r t e d  p r e v i o u s l y . T h e  

ratio for the intensity of product N2''" to that of reactant Ar"*" obtained as 

a function of wavelength is also plotted in Fig. 3. The constant values 

observed for I(N2̂ ,<775 A)/I(Ar'̂ ,<775 A) support the conclusion of the 

previous photoelectron studŷ  ̂that the ratio of the intensities for 

Ar'*'(̂ P3̂ 2' photoionization remains constant at 

photon energies higher than the IE of Ar'̂ 'f̂ P̂ ŷ ) -

The absolute values- for °in  ̂given Ê , are determined 

by the relations 

3̂/2 = -(l/nl)ln[l - I(N2+,783 A)/I(Ar+,783 A)] 

° l / 2  =  "  2*^3 /2  

(3) 

(4) 
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Figure 5. Photoionization efficiency spectra for reactant Ar"*" (--) and 

product ̂ 2 ( ) at E___̂  « 10.3 eV measured using the tandem 

photoionization mass spectrcsster. (o c c) the ratio for the 

^̂ ®̂̂ sities of and Ar ' plotted as a function uatrai anrrt-vi 
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where ffjjj is the total cross section measured for the electron transfer 

reaction Ar"*" + N2 characteristic of reactant Ar"*" ions produced at 769 A. 

Sincc Ar^( y/? ) and Ar^( yo) are fonned at 769 A with a statistical 

distribution of 2:1, is equal to (2/3)c^^ + (1/3) 0-2/2* Uhder thin 

target conditions, can be obtained by the relation 

ffjjj = -(l/nl)ln[i - 1(^2''",76S K)/l[Kxr ,1SS A)] (5) 
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RESULTS AND DISCUSSIŒ 

Absolute Values for egy2 and eiy2 

The values for 53/2» and over the range of 0.25-115.3 

eV determined in this experiment are listed in Table I. The experimental 

uncertainties for 0̂ /2 anà are estimated to be <5% caused mostly fay the 

uncertainties in the N2 gas cell pressure (P(N2)) measurements. At a given 

Eg jjj , the experimental uncertainty for is approximately three times 

those for This results from the calculation of <12/2 losing Eq. (4). 

Total cross sections for the electron transfer reaction of Ar"*" + N2 

have Deen measured previouslyover a wide range of collision energies. 

Since results of many of these studies have recently been tabulated and 

compared to the theoretical results,they are not included in Table I. 

Most of the previous measurements use electron inçact ionization to prepare 

the reactant Ar"*" ions and the reactar.t state distributions are unknown. 

Assuming the Ar"*" ions formed by electron inçact ionization to be a two-

thirds ̂ P3/2 snd one-third '̂ 1/2 mixture, the total cross sections of 

previous studies can be conpared to the values for obtained here. The 

measured values for in the  ̂range of 0.25-115.3 eV vary from ~ 9-13 

and are in good agreerssnt with the cross section (- 10-15 Â̂ ) reported 

by Gilbody and Hasted̂  ̂and Ĉ lli et al.̂  ̂

The theoretical values for 0̂ /2 and at L̂l, 10.5, and 

41.2 eV obtaxned in the HZulti.—state calculations of Spalburg and 3islascn 

are also listed in Table I. The theory correctly predicts that 0̂ /2 
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Table I. Values for <̂ 3/2/ °i/2' 1̂/2/̂ 3/2 the center-of-mass 

collision energy (Ê .mJ 0.2-115.3 eV 

Experimental 

*3/2(A^)^ 

'1/2 ̂(14 '1/2/(̂ 3/2 

Ec.m.lsV) *3/2(A^)^ b̂ Ec.m.lsV) *3/2(A^)^ ; 

This work̂  Ref. 19̂  This work® Ref. 19® 

0.2 
0.25 12.9 10.7 5.7-1.3 6.6̂ 1.1 0.52 0.51 
0.6 13.4 11.6 8.1±1.6 5.3±1.1 0.60 0.39 
1.2 14.5 12.5 8.5±1.7 4.5±0.9 0.58 0.31 
1.4 0.29 
2.1 15.3 12.9 8.1±1.6 4.6±0.9 0.52 0.30 
4.1 14.9 12.3 7.2±1.4 3.3±0.7 0.48 0.22 
5.8 0.22 
8.0 0.23 
10.3 13.2 11.1 6.7±1.3 3.2±0.6 0.51 0.24 
15.2 11.8 10.2 6.8±1.4 3.2±0.6 0.57 0.27 
18.0 
22.6 10.9 9.2 5.8±1.2 3.0±0.6 0.53 0.28 
41.2 10.7 9.0 5.8̂ 1.2 2.9=0.6 0.54 0.27 
52.7 11.3 9.8 6.8±1.4 3.2±0.6 0.60 0.28 
60.0 
82.4 13.9 11.9 7.9±1.6 4.4±0.9 0.57 0.32 
115.3 15.3 13.0 8.4±1.7 5.0±1.0 0.56 0.33 
120.0 

• • • • • • • . • 

R̂eference 32. 

hrhis : vTork. ' mammal F RXT- M».  ̂ % 
estimated to be <5% . 

F RXT- M».  ̂ % 

T̂he value for are calculated using the relation <jj_̂  » 3ffjj, -

'̂3/2* 
T̂he values fro â y2 obtained by multiplying the corresponding 

values for /2/̂ 3/2 Ref.l9 and (J2/2 determined here. 

®The experimental uncertainties are estimated to be - 20%. 

-Values obtained from Fig. 5 of Ref. 12. 

R̂eference 62 of Ref. 32. 

"̂ost recent values obtained by Guyon and Govers (Ref. 23). 
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Theoretical® 

Ref. 20 Ref. 12̂  *3/2 ffl/2(A)̂  ffl/2/<T3/2 

... 0.74±0.10 ... 

ô'.31±0.03 0.58—0.06 
4.*8 Ô.'SS 

Ô.32±0.03 
0.359... 

CÛ68±0.10 
12.1 

'12.3 

2̂ 9 CL24 

iï.l Ô!25 

ô! 51̂ 0.04" 

Ô!52±0.05̂  

SA Ô".61 

CL41±0.04h 
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greater than the intermediate range of interest here, the 

theoretical studieŝ '̂̂  ̂reveal that the energy resonance effect is more 

iinportant than the Franck-Condon factor in governing the aagnitude of the 

electron transfer cross section. The higher values for have been 

partly attributed to the close energy resonance of the Ar'*"{̂ P2y2) + 

N2(X,v»0) and Ar(̂ SQ) + N2"'"(X,v'«l) states. The strong coupling between 

Ar'̂ ('̂ Pgy2) + N2(X,V=0) and the electron transfer state is also shown to be 

responsible for the higher values for <T3/2-

The experimental cross sections are higher than the theoretical cross 

sections.The measured values for at = 4.1, 10.3, and 41.2 eV 

and <siy2 ĉ.m. " 41.2 eV are in reasonable accord with the theoretical 

value. However, the experimental values for ̂ 3̂ 2 at 1.2 and C2/2 1.2, 

4.1, and 10.3 eV are approximately twice the theoretical predictions. 

Recent studies on the vibrational relaxation of diatomic ions show that the 

relaxation rate constant depends strongly on binding energy to the 

collision partner.Since the binding energy of the (Ar°N2)̂  complex is 

~ 1 eV,̂ "̂  the collision complex mechanism is likely to be important at low 

Eg jjj . The discrepancy obsen/ed between the experimental and theoretical 

cross section at low may be due to the fact that in the theoretical 

calculation-̂ '̂  the strong binding energy effect on the reaction dynamics of 

the system has been ignored. 

The variations of e, /-> and as a function of Ei can be seen in 
-»/ *é -̂ / 

Fig. 4. The curve for 0-3̂  exhibits a maximum in the Ê ĝ  range studied, an 

observation consistent with the theoretical prediction. However, the 

sxpsrissntal zaxiiazn is at ~ 5-10 sV instead cf that predicted at ~ 10-25 
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Figaro 4. Total spin-orbit-sfcate-selected cross sections, 03/2» ®l/2' the reaction 

^̂ 3/2,1/2) N2(v=0) -» Arî Sg) + N̂ CV) in the Ê at, range of 0.6-280 eV. 

Ebtpeirinental: (Q) a-̂ /2> (x) <ri/2 Pleasured using the tandem photoionization mass 

£ij>ectrameter; ( o ) (rĵ /2 obtained by multiplying of this experiment and 

(f]72/03/2 measured using the crossed ion-neutral beam arrangement (Ref. 19). 

alieoretical (Ref. 32): (If) 03/2» (*) <̂ i/2 
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eV. The kinetic energy dependence of the cross section for the electron 

treinsfer reaction Ar"*" + N2 observed by Mahadevan and Magnuson̂  ̂in the same 

l̂ab ̂ '̂9® also has a maximum, but at - 30 eV. The most interesting 

observation is that the values for 03̂ 2 and reach a minimum at ~ 

55-100 eV and then increase as is increased from Ê ĵj ~ 100 eV. The 

increase of the cross section from Ê -ĵ  - 60 to 1000 eV has been observed 

previously by Âmme and Hayden.'̂  ̂

Previous experimental̂ ®and theoretical̂  ̂studies show that 

reaction (1) favors the formation of the Ar(̂ SQ) + N2"*'(X,v'»l) endothermic 

channel at low The observed decrease of 0̂ /2 from Ê gĵ  ~ 5-10 eV 

towards lower Ê ĝ  ̂is most likely due to the energetic effect. 

The N2̂ XX,v'=0) + Ar(̂ Sn) state is higher than the Ar'*'(̂ Pgy2) + 

N2(X,V-0) and Ar''"{̂ P2y2) + N2(X,v=0) states by 0.98 and 0.77 eV, 

respectively. These three states are directly coupled in the vibronic 

Hamiltonian matrix.̂ 4 Therefore, at sufficiently high Ê gĵ , product N2"'' 

ions of reaction (1) and (2) can be formed efficiently in the A state of 

N2'''. Parlant and Gislason̂  ̂point out that the energy spread (FWHM) of the 

inelastic electron transfer products should be of the order of - 2 oiiv,-n, 

where a = 1.75 PT' for the [Ar + N2]' system and v̂ gi is the relative 

velocity of the colliding pair. The effective coupling range and the 

collision time can be approximated by 1/a and l/or/j-ĝ / respectively. At 

Eĵ gjj = 280 eV, the highest collision energy used in this study, the energy 

spread of the electron transfer products is estimated to be - 0.81 eV which 

is similar to the potential energy differences between N2'̂ (A,v'=0) + 

Arf̂ Sg) and Ar'*'(̂ Pgy2 1/2) + N2''"(X.v»0). Since the energy spread of the 
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products is expected to be broadened vAien inçulsive vibrational energy 

transfer is taken into account, we believe that the increases of (T2/2 

ciy2 at > 100 eV are likely the results of populating the A state of 

N2"'". The theoretical investigation̂ '̂  shows that for a strongly-coupled 

system such as the [Ar + N2]'*' system, increasing the number of accessible 

product channels increases the total cross sections for all accessible 

processes. 

The values for a2y2 can also be calculated by multiplying the 

corresponding values for determined here and 01/2/̂ 3̂/2 determined in 

the crossed ion-neutral beam experiment.These values for ̂ 1/2» îch are 

shown in Table I and Fig. 4, are found to be in reasonable agreement with 

the theoretical predictions. 

The Values of Its Kinetic Energy Dependence 

The values for the ratio <̂ 1/2/̂ 3̂/2 over the Ê  range of 0.41-164.7 

eV measured using the crossed ion-neutral beam photoionization apparatus 

have been reported recently by Liao, Xu, and Ng.̂  ̂The results of previous 

studiesl2'19'20 those of this experiment obtained using the tandem 

photoionization mass spectrometer at Ê  m̂  = 0.2-115.3 eV are summarized in 

Table I. The previous findings reveal that the values for '̂ i/2/'̂ 3/2 

determined using the ion beam-gas cell arrangement̂  ̂are higher than those 

observed in the crossed ion-neutral beam stud̂ '.-̂ -' The discrepancy is 

speculated̂  ̂to be caused by secondary reactions in the gas cell 

experiment. The TESICO values obtained by Guyon and Covers'̂ ® are slightly 
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higher than those obtained in the crossed ion-neutral study. The instrument 

of Guyon and Covers ençloys a crossed ion beam-effusive neutrad beam 

arrangement and essentially maintains thin target conditions. The tandem 

photoionization mass spectrometer used here has an ion beam-gas cell 

arrangement. In order to maintain a homogeneous N2 target gas density and 

minimize the ion focusing effect on the absolute cross section measurement, 

it is necessary to have a relatively long gas cell. Although the value for 

P(N2) used in the absolute cross section measurements is low, - 7 x 10"̂  

Torr, the conversion ratios I(N2''')/I(Ar'*') (~ 0.03-0.05} are ssore than an 

order of magnitude higher than those observed in the crossed ion-neutral 

beam experiment.Guyon and Covers found that v̂ en the conversion ratio 

for Ar'''(̂ P2y2) increased from 0.008 to 0.012, the value for ô /2̂ '̂ 3/2 

ĉ.m. = 8 eV changes from - 0.35 to 0.5.̂ 3 The values for <̂ 1/2/̂ 5/2 

determined here range from 0.48-0.61 and are substantially higher than the 

corresponding values deduced from the crossed ion-neutral beam study. This 

observation is consistent with the trend found in previous studies. 

Figure 5 depicts the experimental̂ ĉtnd theoretical resultŝ  ̂

1 ? 
for the kinetic energy' dependence of ' ^ 1 /2 ' ^ -3 /2 °  %stO; Tanaka,- and Koyano"̂  ̂

and Giĵ on and Goverŝ  ̂measured the value for CTI ̂ /a-s /-> in relatively 
'*• U./ 6 U/ 6, 

narrow energy ranges. They found that °i/2/°3/2 nearly independent of 

%ab' ̂  observation contrary to the theoretical prediction and the 

experimental results of Liao, Xu, and Ng.̂  ̂Despite the fact that the 

values for c- determined usina the tandem chotoionization mass 

spectrosffîter are higher than those found in the crossed ion-neutral beam 

study, the two sets of data, when plotted as a function of have a 
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Figure 5. Hie values for the range of 0.2-400 eV. Experimental: (o) Réf. 

19; (x)  Réf. 20; (•), (O) this work; (A)  Réf. 12; ( + ) Most recent values obtained 
1)̂ ' Guyon and Covers (Réf. 23). Theoretical; (Q) Réf. 32 
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similar profile shewing a broad minimum at - 10 eV. This observation 

is a qualitative support for the theoretical prediction on the kinetic 

energy dependence of °i/2/°z/2' values for ̂ 2/2/̂ 3/2 determined using a 

rf of ~ 20 MHz applied to the octopole gas cell, are also plotted in Fig. 

5. Talking into account the experimental uncertainties (- ±0.1), the values 

for <̂ 1/2/̂ 3/2 obtained with rf = 4 and 20 MHz are in agreement. The values 

for ?iy"2/-3/2 -- -lab ~ 10-15 eV obtained by the crossed ion-neutral beam 

study are in good agreement with the theoretical̂  ̂results. The discrepancy 

observed between the experimental̂ ' and the theoretical values for 

<T2/2/°'3/2 higher and lower has been attributed to the estimated PES 

used in the calculation. Recently, Parlant and Gislason have reported a 

more accurate calculation on the electron transfer reaction of Ar"̂  + N2 

using the ab initio PES. The calculation of the state-to-state cross 

sections for reaction (1) and (2) should be straightforward. It will be 

interesting to coitçare results of the new calculation and experimental 

findings. 

Possible N2 Gas Cell and Background Pressure Effects 

r»n iiac f  mr ^  ^ anrl «r- ^ ^  

One of the interesting findings of the semi-classical multi-state 

study is that the cross section, for the deexcitation reaction 

Ar̂  ( ̂P2y2 ) N2{X,v=0) —> Ar̂ (̂ Pgy2) •*" 2̂ ( ̂ ) 

is found to be large even at low collision energies. The cross section, ag, 

fr\T" ovr»î 4 r>n r\r'r*/̂ aee 
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Ar+(2p3/2) + N2(X,V=0) —> + N2 (7) 

is predicted to be small at low (< 10 eV); but it becomes significant 

as is increased. The calculated valueŝ  ̂for cp and ng are listed in 

Table II. The predicted value (14.5 Â̂ ) for ag is higher than the 

experimental value (10.7 Â̂ ) for ̂ 3̂  at = 41.2 eV. Although the 

Ar''"(̂ P3̂ ) + N2 and Ar'*'(̂ Pî ) + N2 states are not directly coupled, the 

theoretical study shows that the surprisingly large cross sections for 

reactions (6) and (7) arise from the mutual interactions of the electron 

transfer Ar + N2"'' states with the spin-orbit states of Ar"*". 

The spin-orbit transitions induced by the presence of the Ar + N2'*' 

electron transfer state provide possible mechanisms for the mixing of the 

reactant Ar"̂  state during the transportation of reacta&nt Ar"*" ions from the 

photoionization region to the reaction gas cell if the N2 background 

pressure in the apparatus is high. When the spin-orbit-state mixing occurs 

prior to the electron transfer reactions (1) and (2) in the gas cell, the 

experimental value for ̂ 1/2/̂ 1/2 be higher than the true value. 

Because the background pressure is low (< 5 x 10~® Torr) along the path 

between the photoionization region and the entrance of the rf octopcle gas 

cell in the tandem photoionization mass spectrometer, the mixing of the 

reactant Ar"*" state outside of the gas cell should be small. Assuming a 

value of 15 Â  for or og, we estimate the conversion between Ar*(̂ P̂ y2) 

emd Ar'''(̂ ?i /o) to be < 2%. 
J./ 6 

If the N2 gas cell pressure is high or the gas cell is long, spin-

orbit-state mixing can also take place within the gas cell concomitant with 
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Table .CI. Theoretical̂  cross sections and foi collisional-induced spin-orbit transitions 

'':c.m. (ev)  
09 .  

ffg(A. ) 
. "9. 

ô [)(A ) 

1.2 0.02 4.19 

4.1 0.44 4.35 

10.3 1.98 6.59 

41.2 6.63 14.50 

R̂eference 32. 

T̂ota.l cross section for the process Ar'''(̂ P3̂ ) + N̂ fv̂ O) -> Ar'*"(̂ P-|̂ ) + 

T̂otal cross section for the process Ar'̂ {̂ Pĵ y2) + N2(v=0) -> Ar'̂ (̂ P3̂ ) + N̂ fv'). 
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electron transfer. Because of the relatively long gas cell used in this 

study, it is possible that secondary processes in the rf octopole gas cell 

may have an effect on the measured values for <̂ 3/2' "s' 

have performed a single model analysis to examine the effect of reaction 

(6) and (7) on the absolute cross section measurements (see Appendix). In 

the model analysis, we consider a beam of reactant Ar"*" ions, all assumed to 

have the same velocity, is incident on a target of N2 in the rf octopole 

gas cell. In addition to reaction (1) and (2), Ar'''(̂ P3y2) and Ar'̂ {̂ P2./2̂  

can undergo spin-orbit transitions according to reactions (6) and (7). The 

derivation in Appendix shows that the intensities of Ar'''(̂ P3̂ ) and 

Ar''"{̂ Pĵ )̂ at a position x measured with respect to the entrance of the rf 

octopole gas cell, and l2̂ (x), respectively, can be calculated by 

Eqs. (A9) and (AlO). The product 2/2'1/2̂  ions of reactions (6) and 

(7) are assumed to move along the gas cell with the same velocity as that 

of the reactant Ar"*" ion beam. If the main contribution to cTg and arises 

from long range interactions as predicted by the theory, the latter 

assuzgtion is a reasonable one. Assuming 100% collection efficiency for 

product ̂ 2'̂ , the total intensity for N2''" forsed in the reaction gas cell is 

predicted by Eq. (All). Using the theoretical values for s-. and (Table 

II) and the experimental values for ̂ 2/2 —̂  "̂ 1/2 (column 5 of Table I) as 

the true cross sections, the variations of the measured values for ̂ 3̂ 2/ 

ffjjj, and ffi/2/<̂ 3/2 as a function of can be calculated by Eqs. (A12) 

and (3). The experimental values for used as part of the inputs in the 

calculation are obtained by multiplying the corresponding experissntal 
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values for 53̂ 2 and those for measured by the crossed ion-neutral 

experiment.The values predicted in the model analysis for °'m' 

oi/2/°2/2 at: - 1 x lO'S, 1.1 x 10"'̂ , 4.6 x lO"*, 1.0 x 10"̂ , and 2.0 

X 10"̂  Torr are summarized in Table III. 

As anticipated, the predicted value for <13̂ 2 at  ̂- 1.2 eV 

remains constant as is increased from 1 x 10"̂  to 2 x 10"̂  Torr 

because is negligible. At a higher and a high P{N2).- a finite 

value of (jg causes the Ar"*" beam to be richer in Ar'''(̂ P2̂ ) as the reactant 

Ar"̂  beam moves along the gas cell and thus the measured value for 03̂ 2 is 

lower than that measured at a lower P(N2). For exançle, at Eg_ĝ  ̂« 41.2 eV, 

the value of jg is 6.6 Â̂ , and the predicted value for ̂ 3̂ 2 decreases by 

1.5 Â  as P(N2) increases from 1 x 10"̂  to 2 x 10"̂  Torr. Nevertheless, the 

variation of ̂ 3̂ 2 must be considered small for a change of more than two 

orders of magnitude in P(N2). Based on this analysis, we believe that the 

measured values for 0̂ /2 (Table I) are reliable. 

The value for a„ is measured by using a reactant Ar"*" beam with a 

composition of 66.7% in Ar'*"(̂ p3̂ / and 33.3% in Ar"̂ (̂ ?2y2)- Although the 

value for is predicted to be greater than that for vg, as a consequence 

n aT 1 XT ri-î rfr̂ or» m-. _  ̂ nwial analwcic cHrturc tHat hHo 

reactant Ar"̂  béas also beccnses richer in Ar'̂ (̂ P2y2) 2S it traverses through 

the rf octopole gas cell at a high P(N2). This effect is manifested by 

lower Cjj, values at higher P(N2). Thus the value for <̂ i/2/'̂ 2/2' calculated 

by Eq. (3) is highly susceptible to the change in ?{N2)- The values for 

e-i y, at E =1.2 and 4.1 eV are found to decrease with increasing 

P(N2), •vrfiile the opposite trends are observed at = 10.3 and 41.2 eV. 



www.manaraa.com

Table III. Predicted variations of the meassured vlues for 0̂ /2̂ ' ®nî ' 

and <Ji/2/<̂ 3/2 a function of the N2 gas cell pressure (P(N2)) 

Ec.m. = l.ZeV = ̂ .leV 

P(N2)(Torr) a3/2(Â ) 1̂/2/̂ 3/2 "̂ 3/2° l / 2 / °3 /2  

lXlO-5 14.5 11.2 0.31 14.9 11.0 0.22 

1.1X10-4 14.5 11.2 0.31 14.9 11.0 0.22 

4.6X10-4 14.5 11.1 0.31 14.8 10.8 0.19 

1.0X10-3 14.5 11.0 0.28 14.8 10.7 0.17 

2.0X10-3 14.5 10.9 0.26 14.6 10.3 0.12 

â-̂ /z equal to a(X=l) and g(X=0.667), respectively, which 

are calculated using Eq. (B12). In the calculation, the theoretical 

values for c-c and Cn (Table II) and the experimental values for c-2r> 
- i/ i 

(column 2 of Table I) and <̂ 1/2 (column 5 of Table I) are used as the 

inputs for the true cross sections. 

Ĉalculated using the relation ffi/2/«̂ 3/2 = ̂ '̂ ÏÏ/'̂ 3/2 ~ 
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Ec.m. - - 41.2eV 

°l/2^°3/2 

13.2 9.3 0.24 C>
 

8.1 0.27 

13.2 9.9 0.24 10.6 8.1 0.29 

13.0 9.8 0.26 10.2 8.0 0.36 

12.8 9.7 0.26 9.8 7.9 0.43 

12.4 9.4 0.28 9.2 7.8 0.55 
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A change by nearly a factor of two for ĉ.m. * and 41.2 eV 

is expected vAien P(N2) varies from 1 x 10"̂  to 2 x 10"̂  Torr. At P(N2) = 

4.6 X 10"̂  Torr, the mean free path of N2 is conçarable to the length of 

the rf octopole gas cell. The value of <̂ 1/2/̂ 3/2 ̂ t Ê .m. " 41.2 eV with 

P(N2) = 4.6 X 10"4 Torr is predicted to be 22% higher than that at P(N2) " 

1 X 10"̂  Torr. It is deceiving to use the mean free path argument to 

exclude the possible influence of secondary reactions in the measurement of 

<'l/2/°3/2' analysis is based on probably an oversinçlified model. The 

accuracy of the values for ag and used here remains in question, 

especially values at higher 2̂  % vrtiere contributions by short range 

inçulsive interactions may be inçortant. 1±ie (Ar • conçlex is strongly 

bound. At low , the collision conçlex mechanism is expected to have 

a significant effect on Nonetheless, this simple model analysis 

reveals that the values for determined here might be less 

accurate in conçarison to those obtained in the crossed ion-neutral beam 

experiment vAere the effects of reactions (6) and (7) are small. Similarly, 

the values for deduced by multiplying the corresponding experimental 

values for «3̂ 2 reported here and those for "I/2/-3/2 -sported in Ref. 19 

sight be more accurate than those measured using the tandem photoionization 

zass spectrometer. 

However, the model analysis does not explain the differences of the 

values for 1̂/2/̂ 3/2 obtained using the tandem photoionization mass 

spectrometer and the crossed ion-neutral beam photoionization apparatus. 

The results of the analysis as listed in Table III indicate that for P(N2) 

- 7 X 10"̂  Torr used in the measurements of <̂ 2/2 °m' reactions (6) and 
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(7) should have little effect on the values deduced for 

CI/2). In view of these observations, we believe that it is not justified 

to reject the values for (and <̂ 1/2̂  determined using the tandem 

photoionization mass spectrometer. 

As pointed out previously, the collection efficiency for electron 

transfer product ions in a crossed ion-neutral beam experiment is expected 

to be good. The fact that relative state-selected cross sections for the 

electron transfer reactions H2*(v') + and N2*(v') + Ar̂ l determined 

using the crossed ion-neutral beam photoionization apparatus are in good 

accordance with results of TESICO experimentŝ ând reliable theoretical 

calculations33,35,53 gegng to favor the values for 1̂/2̂ 3/2 Ref. 19 

over those measured with the ion beam-rf octopole gas cell arrangement. 

Without doubt the collection efficiency of product N2''' in the latter 

experiment is better than that in the crossed ion-neutral beam experiment. 

The higher value for than that for C2/2 partly attributed to the 

close energy resonance of Ar'*"(̂ P3y2) + N2(X,v=0) with the N2'*'(X,v'=l) + 

AT'V̂ SQ) electron transfer state. It is possible the collection efficiency 

attained in the crossed ion-neutral beam experiment for product Nn"*" of 

reaction (1) is slightly higher than that of reaction (2). If this is the 

case, the values for <̂ 1/2/̂ 3/2 should be considered as lower bounds. At the 

present time, we do not have an explanation for the observed differences of 

values for obtained using the tandem photoionization mass 

spectrometer and crossed ion-neutral beam photoionization apparatus. 

Most recently, Guyon and Goverŝ  ̂have obtained values for (̂ 1/2/1̂ 3/2 

at Eg jjj = IS, 60, and 120 eV (see Table I and Fig. 5). These values are 

close to those measured using the tandem photoionization mass spectrometer. 
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Absolute state-to-state total cross sections 

for reactions (1) and (2) 

The vibrational distributions of product N2 (X,v') formed by-

reactions (1) and (2) in the range of 0.25-41.2 eV have been 

measured by Liao et al.̂  ̂as part of this experiment with a crossed ion-

neutral beam photoionization apparatus. The theoretical values for the 

fractions of product N2''" formed in a vibrational state v' by reactions (1) 

and (2), ̂3/2"*v' l̂/2">v'' obtained by the relations 

3̂/2-»v' " *̂ 3/2-»v'/«̂ 3/2 

l̂/2-»v' " *l/2-*v'/*l/2 

At Eg m » 1.2, 4.1, 10.3, and 41.2 eV, it is energetically possible 

to produce N2"*" via reactions (1) and (2) in vibrational states v'>2. 

According to the theoretical prediction, the values for ̂ 2/2-*v' 

x̂ /̂2 yy' f V̂ 3, are ̂  0.01 in the Eg rangs of 1.2—41.2 eV. Therefore, 

Liao et al. anal̂ 'zed their data with an assunçtion that charge transfer 

prodijct N2'*'(X..V') ions are only formed in the v' = 0. 1. and 2 states. 

The experimental uncertainties for ®̂<̂ ced in the crossed 

ion-neutral beam experiment are relatively large. Nevertheless, the 

experimental results confirm the theoretical prediction that product 

N2'̂ (X;V') ions of reactions (1) over the range of 1.2-41.2 eV are 

fom̂  predominantly in the v'=l state. The semi-classical isulti-state 

studies of Spalburg and Gislason-̂  and Parlant and Gislason-" show that the 

( 8 )  

(9) 
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high cross section for producing Ar(̂ SQ) + N2'*'(X,v'-l) is partly due to the 

close energy resonance of + N2(X,v»0) and Ar(̂ SQ) + N2'̂ (X,v'«l) 

and partly because of the strong direct coupling of the two states in the 

vibronic Hamiltonian matrix. In the intermediate range, they find 

that energy resonance is more inçxartant than the Franck-Condon 

consideration in determining the product state distributions. The 

observation that the formations of inelastic charge transfer channels 

ATĈ SQ) + N2''"(X,V'«0) and Ar(̂ SQ) + N2'̂ (X,v'=2) become more significant as 

Eg jjj increases is consistent with the conclusion found in the symmetric 

electron transfer reaction of H2'̂  + 

Combining the experimental values for o^/l' °l/2' 3̂/2->v" 

l̂/2-»v' ' absolute state-to-state total cross sections, 02/2-*v' °l/2-*v' ' 

for reactions (1) and (2) are calculated using Eqs. (8) and (9), 

respectively. As shown in Table IV, the experimental and theoretical values 

for ff3/2-)v" = 0-2, are in reasonable agreement except at Eg_ĝ _ - 1.2 sV 

v̂ ere the experimental value for ff3/2->i is ~ a factor of 1.5 higher than 

that predicted by the theory. Theoretical values for Pi/2-»v' ' " 0-2, at 

Eg - 0.25 eV are not available to cosçare vith the sxperissntal results. 

Î e values for =2/2-̂ 2 -c.m. ** --- —- --- —* --- crude estimates. 

Depending on the values for ?2/2 "sed (column 4 or 5 of Table I), the 

estimated values for 0-1̂ -̂ 2 at  ̂ = 1.2 and 4.1 eV differ by nearly a 

factor of two. 
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Table IV. State-to-state cross; sections, (̂ 3/2-*v' ®l/2̂ " reactions 

Ar̂ (̂ P3/2,l/2) ̂  N2(X,v=-0> -> Ar(̂ So) + N̂ fX'V) 

Experimental Theoretical̂  

ĉ.m. 
(eV)3 

v 

*3/24v'(Â ) 
02 j 

^̂ 3/2">v' '̂ l/2-»v'(̂  ) l̂/2-<v' *3/2-*v' ikh *3/2-n/' 'l/2-*v'(̂  ̂

0.25 0 0.00+1.3 0.00+0.10 -0.0 0.0 
-0.0 -0.00 

0.13 to.10® 
1 12.9+0.6 I.00+0.00 ~0.9{~0.9) 0.14+0.35 • • • « • • • • • • • • 

-1.5 -0.10 -0.14 
0.87̂ 0.10® 

2 ~5.7(-5.8) 0.86+0.14 • • « • • • • • • • • • 

-0.35 

1.2 0 0.0+1.5 0.00+0.10 0.00 0.000 0.00 0.000 
-0.0 -0.00 

1 12.3±2.2 0.05±0.15 8.28 0.998 0.90 0.019 
2 2.2*2.2 0.15±0.15 ~4.5(8.5)9 -1.09 0.02 0.002 4.68 0.977 
3 I I # *  * • • • • • • • • 0.00 0.000 0.02 0.004 

1.7 0 
1 l.or 

t 
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4.1 0 0.0+1.5 0.00+0.10 ... <0.01 0.000 0.00 0.000 
-0.0 -0.00 

1 12.7±2.2 0.85̂ 0.15 ... 12.06 0.995 0.56 0.196 
'1.0': 

2 2.2±2.2 0.15̂ :0.15 ~3.%(7.2)9 -l.o9 <0.06 0.005 2.27 0.794 
3 •  •  •  • • •  • • •  

0.00 0.000 0.03 0.010 

10.3 0 0.0+1.3 0.00+0.10 ... 0.08 0.006 0.01 0.045 
-0.0 -0.00 

1 12.8+0.4 0.97+0.03 ... 12.18 0.987 1.87 0.570 
-2.0 -•0.15 

2 0.4+2.0 0.03+0.15 ... 0.08 0.007 1.24 0.378 
-0.4 -0.003 

3 ... • • •  • • •  
0.00 0.000 0.02 0.006 

41.2 0 2.4±1.1 0.22̂ 0.10 ... 1.69 0.133 0.46 0.104 
1 7.2±1.9 0.67:1:0.18 ... 7.60 0.855 4.29 0.799 
2 1.2+1.9 0.11+0.18 ... 0.11 0.012 0.51 0.095 

—1 • 2 -0.11 
3 •  • • •  • • •  0.00 0.000 0.01 0.002 

®c:enter-of-mass col 11 is ion energ;̂ . 

t̂iis work. 

•̂ Reference 32. 

"̂ Iie values; for in column 5 of Table I are used to calculate 

The values in j)atentlicjses are deduced using the values for determined in 

this work (column 4 of Talale X). 

R̂eference 16. 

Reference 17. 

ÎSstiniated values. 
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cmcLusiws 

Absolute spin-orbit-state-selected total cross sections for reactions 

(1) and (2) over the range of 0.25-115.3 eV have been measured using 

the newly developed tandem photoionization mass spectrometer. The 

theoretical values for ggy2 in the range of 1.2-41.2 eV are 

approximately a factor of two smaller than those obtained in this 

experiment. A sinçle model analysis, which takes into account possible 

spin-orbit transitions in the rf octopole reaction gas cell, reveals that 

the measured values for using the ion beam-gas cell arrangement are 

reliable, v̂ ereas the values for <̂ 1/2/̂ 3/2 can be strongly affected by 

reactions (6) and (7) if high P(N2)(> 5 x 10"̂  Torr) is used in the 

absolute cross section measurement. Values for are also deduced by 

using the measured values for 0-̂ /2 the corresponding values for 

1̂̂ 2/̂ 3/2 obtained in the crossed ion-neutral beam experiment. The values 

for (Tiy2 thus deduced are in reasonable agreement with the theoretical 

cross sections. The kinetic energy dependences for ^3/2» °l/2 

predicted by the —ti-stats calculation are in qualitative accord with 

the experimental obser</ations. The values for *73̂ 2 ~d --- fc«ind to 

increase at higher Ê . ̂  {>41.2 eV). This observation is rationalized as 

due to the formation of N-?"*" in the Â n,, state at high . 

Combining the measured values for 3̂̂ 2/ <̂ 1/2 ' the measured 

vibrational distributions for N2'''(X,v' ) ;X3/2̂ ' —- "1/2-̂ '> formed by 

reactions (1) and (2) in a crossed ion-neutral beam experiment, the 

absolute state-to-state total cross sections, ff3/2-n7' 

reactions (1) and (2) have also been determined. 
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The discrepancies observed between the experimental and theoretical 

results can be partly attributed to the estimated PES used in the semi-

classical multi-state calculation. The recent theoretical study shows that 

the assumption of isotropic coupling used by Spalburg and Gislason is 

incorrect. At higher Ê  it is necessary to include the A'̂ IÎ  state of N2 

in the calculation. A new calculation which used realistic PES for the [Ar 

+ ̂2]"̂  system is expected to in̂ rove the theoretical predictions. We hope 

the experiment findings presented here will provide the impetus for a more 

rigorous theoretical study in the future. 
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APPENDIX 

Possible N2 Gas Cell Pressure Effects on the 

Measured Values for 3̂/2' and 

In the following analysis, a coordinate system is chosen such that 

the x-axis coincides with the central aixis of the rf octopole gas cell. The 

entrance and the exit of the gas cell correspond to x=0 and x=l, 

respectively. The changes in the and beam 

intensities, dl3y2 and dl̂ ŷ ' are proportional to the change in target 

thickness, dx, 

^̂ 3/2 ~ •*" "'0̂ 1/2*̂  

The general solutions of the coupled differential equations are 

-3/2'"' 

ki+ai+aa 
r_r r ii 

kj_+a2+a3 

If . V \ / s.'i V '^1 ^ / 
k2+ai+â  
( =—:)C2exp(k2x) 
k2+a2+a3 

b̂ Ĉ exp'.kpv) + b2C2exp(k2x) 

Il/2(x) = C3_exp(kj_x) + C2exp(k2x) (A4) 

•»̂ ere â  = nâ , 32 = 1̂ (03̂ 2 + og), a? = na?, â  = n( oiy2 + , ki_,2 =[-(22 

+ â ) + /[ (32 — â )̂  + 43233)1/2, and and C2 are arbitrsry constants. At 
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the entrance of the rf octopcle gas cell, we assume that the fraction (X) 

for Ar'̂ (̂ P3y2) the reactant Ar"̂  ion beam is the same as that produced by 

photoionization. This requires that 

l2ŷ (x=0) = b̂ Ĉ  + ̂ 2̂ 2 * XI0 (A5) 

1̂/2 + Cn = {l-X)Io (A6) 

= lolk̂ ll ~ X) — X]/(b2 ~ b̂ } = fj_Io (A7) 

C2 " Io[X — bĵ (l — X) ]/(b2 — b̂ ) = ̂ 2̂ °' (AB) 

vmere lo is the total intensity of the unattenuated reactant Ar"*" beam. 

Therefore, Eqs. (A3) and (A4) become 

l3/2(x) = [b̂ f-iexpOcix) + b2f2exp(k2x)]Io (A9) 

The total intensity of product formed in the rf octopcle gas cell can 

be calculated as 



www.manaraa.com

86 

iN̂ d) = Î [nl3/2(x)cr3/2 + 

bl&l, _ 2̂̂ 2, 
= nIo{[ (explk̂ l) - 1) + (exp(k2l) - 1 ) ] ?3/2 

f/' 
+ [—(exp(k]̂ l) - 1) + —(exp(k2l) - ̂ ) ]"̂ 1/2} 

ki 2̂ 

The nisasured cross section is 

-1 % 
(T(X)= —ln(l ) (A12) 

nl 

The values for and are equal to a(X=l) and CT(X=2/3), 

respectively. 

(All) 
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SECTION III. 

ABSOLUTE STATE-TO-STATE TOTAL CROSS SECTIONS 

FOR THE REACTIOJ 

N2(A,V'>=0-2) + âtv-Sq) > N2(X,V) + 2/2̂  

Introduction 

The state-selected cross section measurementŝ "̂  for the reaction 

N̂ (X,v') + Ar(̂ So) —> N2(X,v) + Ar+Ĉ Pĵ  (1) 

and its reverse 

Ar+(̂ P2/2 1/2) + N2(X,v»0) —> Ar(̂ So) + N̂ (X,v' ) 

( 2 )  

have stimulated many theoretical studies'of the [N2 + Ar]"'' electron 

transfer system. Reliable theoretical state-to-state total cross sections. 

"v'-Klv Ĵv-»v' ' reactions (1) and (2) are now available from semi-

classical multi-state calculations.The most recent multi-state 

• I. i ̂   ̂ 1 V/#.» m.*  ̂ ^̂  WSAAWSAAMWAWA* WtOCO WiC C&w *. yjf V / c* W MXV., 

linear and perpendicular approaches of Ar to N2 and obtains the cross 
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sections from weighted averages of calculations using the two geometries. 

Tlie procedure for obtaining the cross sections from weighted averages 

should be accurate if the cross section varies smoothly from the linear to 

the perpendicular configurations. Furthermore, the ab initio PES used have 

been calculated assuming a constant N-N distance equal to the equilibrium 

bond distance. Therefore, inpulsive interactions and the dynamical effects 

induced by vibrational motion have net been accounted for in the multi-

state calculation.® In spite of these approximations, it is gratifying to 

find® that the predicted state-selected total cross sections, â ,, v' = 0-

4, for reaction (1) at the center-of-mass collision energies (Eg ) of 8 

and 20 eV are in agreement with the experimental results.̂  

Since the product state distributions are expected to be sensitive to 

the geometry of the atom-diatom colliding pair, state-to-state cross 

sections obtained at a wide Ê  range will provide a test for the multi-

state calculation and the ab initio PES. Detailed absolute state-to-state 

cross section data for reaction (2)̂ 0 and the spin-orbit-state 

distributions of reaction (i)~~ have been measured recently in our 

laboratory. Here, we report absolute values for ĉ ,, v' = 0-2, and 

yc&t ouawc—WW—ovou-c wi.woo ^̂ y'"̂ JV' ' * " v—6, ciw 

Sj, = 1.2-140 eV, and ccsçare these values with the predictions of nulti-

state calculations. The consistency of the measured absolute state-to-state 

cross sections for reactions (1) and (2) is examined from the consideration 

1 
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EXPERIMENTAL 

The triple-quadrûpole double-octopole photoionization apparatus used 

in this study has been developed from the tandem photoionization mass 

spectrometer.The detailed design of this apparatus will be described 

in a separate publication.̂  ̂Figure 1 shows the cross sectional view of the 

apparatus. It consists essentially of a 0.2 m vacuum ultraviolet (VUV) 

monochromator (McPherson 234) a discharge lanp, a tungsten photoelectric 

VUV light detector, three quadrupole mass filters ((glF), two radio 

frequency (rf) octopole ion guidê  ̂reaction gas cells, a supersonic free 

jet production system and a variant of the Daly-type scintillation ion 

detector. 

The experimental procedures for the measurement of cg are similar to 

those described previously.,13 iĵ g photoionization efficiency (PIE) 

spectrum for in the wavelength region of 769 - 800 A obtained using a 

wavelength resolution of 3.5 A (FWHM) is shown in Fig. 2. The reactant 

N2(X) ions in the v' - 0 state are prepared by photoionization of a N2 

molecular beam at the wavelength (X) of 791.5 A, which corresponds to the 

position of the first strong autoionization peak in the PIE spectrum. The 

N2 molecular beam is produced by supersonic expansion through a 50 /um 

diameter quartz nozzle, at a N2 stagnation pressure of 40 Torr. The 

photoionization chamber is pumped by a freon-trapped 6 in. diffusion punç 

(DP) which maintains a pressure of <1x10"- Torr during the experiment. As 

pointed out previouslŷ ®, the use of a sufficiently lew nozzle stagnation 

pressure, to maintain a low background pressure in the photoionization 
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Figure 1. Cross-sectional view of the triple-quadrupole double-octopole photoionization 

apparatus. (1) Photoionization region, (2) nozzle, (3) to i:reon-trapped 6 in. 

diffusion punp (DP), (4.) the first quadrupole mass filter (Ç̂ F), (5) to liquid-

nitrogen (LN̂ )-trapped 6 in. DP, (6) the first QMF chamber, (7) the first ratio 

frequency (rf:) octopold ion guide chamber, (8) the first reaction gas cell, (9) the 

first rf octopole ion cpjide, (10) to IJ*Î2-trapped 6 in. DP, (11) the second QMF, 

(12) to IN2"(''̂ P̂Î'Gd 4 in. DP, (13) the second reaction gas cell, (14) the second rf 

octopole ion guide, (1!)) the second rf octopole ion guide chamber, (16) tlie third 

QMF, (17) detector chainlDer, (18) plastic scintillator window, (19) photoinultiplier 

tube, (20) aluminum ion target, (21) to 2 in. DP 
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chamber, is essential to avoid a change in the vibrational state 

distribution of reactant ions due to collisions of reactant nJ ions with 

background N2 in the photoionization chamber. The reactant NtfX.v'-O) ions 

formed at the photoionization region are extracted perpendicular to the N2 

molecular beam and selected by the first QMF (4) before reacting with Ar 

according to reaction (1) in the second rf octopole ion guide reaction gas 

cell (13). The first rf octopole ion guide (9) and the second (11) are 

only used as ion lenses in this measurement. During this measurement, the 

second is tuned to the mass of (™/e = 28) and the first rf octopole 

ion guide reaction gas cell (8) is ençty. 

The second rf octopole ion guide is constructed of eight molybdenum 

rods, with a diameter of 3.16 mm and a length of 28.5 cm, symmetrically 

spaced in a circle of 1.27 cm diameter. The second reaction gas cell is 13 

cm long and is positioned at the center of the second rf octopole ion 

guide. The frequency and peeik-to-peak voltage used are -10 MHz and 450 V, 

respectively.̂ '̂14 r̂ gas cell pressure is monitored with a Baratron 

manometer (nKS model 390HA S?05) and a Ar gas cell pressure of 8x10"̂  Torr 

is used in this experiment. 

Trio -i r\nc -Pnrrno/̂  -in -î-ho rf o -inn 

reaction gas cell are sass selected b̂ ' the third QMF (16) and detected by 

the scintillation detector (18-20). The laboratory collision energy (Ê ax) 

is determined by the difference in potential between the photoionization 

Korr-î r\rv rf a inn rnii rrac 1 T̂ o r>rrv̂ ir*̂  

Ar"*" ion intensity is maximized carefully at each E 
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The PIE spectra for the reactant N2 ions and the product Ar"̂  ions 

formed at = 10 eV, and the ratio of their intensities, i(Ar''')/lQ(N2), 

are shown in Fig. 2. The conroosition of N̂ CX) in the v' • 0 and 1 states 

produced at the autoionization pecik, X = 781 A has been determined 

previously at wavelength resolutions of 0.3̂ ,̂ 1̂ ®, and 1.4 (FWHM). 

Because of the lower wavelength resolution used here, the minor 

autoionisation peak for N- at X = 781 A appears as a shoulder (see the 

0 
arrow in Fig. 2) of the strong autoionization peak at X •= 784 A. The 

autoionization peak at X = 781 A is evident in the PIE spectrum for product 

Ar"*" ions. The value for i(Ar''")/lQ(N2) at X = 781 A is substantially higher 

than that at 791.5 A. This is consistent with the previous experimental 

finding that at Ê gb " 10 eV. 

The absolute value for CQ at a given Ê , is determined by the 

relation 

cn = ̂ Infl - ] (3) 
V ILL 

Here In(No) is sum of the intensities of Ar"*" and snd n and 1 represent 

the number density of Ar and the length of the second reaction gas cell, 

respectively. The value for i(Ar"'") has been corrected for background Ar"*" 

formed outside of the reaction gas cell using the procedures described in 

Rsf. 15. We find that within experimental uncertainties, is equal to 

the intensity cf reactant observed v.̂ .en the gas cell is esçty. 

Using the same procedures, the cross section, a„, characteristic of 
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Figure 2. ( ) PIE curve for reactant N̂ ; ( ) PIE curve for product Ar"*" at = 10 eV; 

( —-) the ratio, i(Ar^)/I(N2), of tlie intensity for product Ar^ to that for 

reactant 
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reactant N2(X) in the v' = 0 and 1 states to be XQ and X̂ , respectively, 

the values for CTQ, are related to XQ and X̂  by the relation 

XqCQ + X^a^ = (4) 

Since the sum of Xq and X̂  is equal to one, Xq and X̂  can be calculated 

v̂ en CTrt and ai are known or oi can be determined bv measurino an. a_. Xa. 
u x x " v ' uf v • 

and Xj_. 

In order to calculate the value for using Eq. (4), it is necessary 

first to determine the values for Xq and X̂ . The experiment of Liao et 

al.has shown that the product N2(X) ions of the electron transfer 

reaction Ar'*'(̂ P2ŷ ) + N2(X,v=0) at * 1.2-4.1 eV are formed 

predominantly (85̂ 15%) in the v' = 1 state. We have prepared N̂ CX) ions in 

the first rf octopole ion guide reaction gas cell using the reaction 

Ar'̂ (̂ Pgy2) + N2(X,V=0) at = 4.1 eV. "Hie Ar"*" ions are produced in the 

pure state by photoionization at X = 786 A. The N̂ tX) ions formed in 

the first reaction gas cell are guided into the second rf octopole ion 

guide reaction gas cell and further react with Ar according to reaction (1) 

at m = 4,1 eV. Itie measurements of the intensity of product Ar"*" formed 

in the second reaction gas cell and that of N2'*" formed in the first 

reaction gas cell using the third QMF allow the determination of the total 

cross section at Ê  =4.1 eV characteristic of N̂ vX) ions produced by 

the reaction + N-;(X..V=0) at E_ _ = 4.1 eV. Knowino the 

vibrational distribution of N̂ CX) and the value for CN at " 4.1 eV, 

we have calculated the value for ĉ.m. ~ eV using an equation 
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similar to Eq. (4). In principle, at other of interest can be 

determined by the same method. Since the intensity for N2(X) produced by 

the reaction Ar'*"(̂ P3y2) + N2(X,v=0) is low, the determination of at each 

jjj requires considerable counting time. The value for Eg_ĝ _ = 4.1 

eV determined by this method, together with the measured values for (TQ and 

ffjjj at Eç, = 4.1 eV, makes possible the calculation of XQ and XJ_ at X « 

781 Â usina Ea. (4) The values for XA and Xi are found to be 0.65+0.06 and 

0.35+0.06, respectively. The experiment has also been performed by 

preparing N̂ CX) in the first rf octopole ion guide reaction gas cell at 

Ej, jjj = 4.1 eV and then colliding it with Ar in the second rf octopole ion 

guide reaction gas cell at Ê  ̂= 5.88 eV. The values for XQ and X̂  

obtained in the two experiments are in agreement. These values for XQ and 

X̂  have been used to calculate cr̂  from the values of CQ and measured at 
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RESULTS 

Absolute state-selected cross sections, 

â ,, V = 0-2, for reaction (1) 

The absolute values for , v' = 0-2, at = 1.2-140 eV 

determined in this experiment are listed in l̂ le I. The relative values 

for ffy,, V' =" 0-2, at * 1.2-320 eV have been reported by Liao et 

al.-G xhe previous values for ĉ m ° 20-140 eV are consistent 

with those determined here, vAiereas the values for oq/o  ̂at Ê  Q̂  < 14 eV 

obtained by Liao et al. are lower than those of this experiment, "flie 

absolute values for 02 listed in Table I have been calculated using the 

known values for 02/̂ 1̂ Since the values for 02/̂ 0 ®c.m. - sV 

are large and the measured values for CQ have high uncertainties, the 

values for 02 at Ê , < 20 eV calculated using the values for ff2/o'O CTQ 

are not accurate. However, absolute values for 02 at Ê  ̂  ̂- 20-140 eV 

determined by multiplying the values of 2̂/̂ 0 the corresponding values 

for uQ ( see Table X ) are m accord wzth those calculated uszng the values 

for 2nd -2/'!' 

The results obtained in the threshold photoelectrcn secondary ion 

coincidence (TESICO) experiment of Covers et al.̂  are also shown in Table 

I. The absolute values for â ,, v' = 0-2, obtained by Covers et al. were 

<̂ o4-orTT*î Vwr Vrirtwn r'T'/̂ ee f r̂ r 

the symmetric electron transfer reaction Ar"*" + Ar and the relative total 

cross sections for the electron transfer reactions Ar̂  + Ar and N2''" + Ar 
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Table I. Absolute vibnational-state-selected total cross sections, â ,, v' = 0-2, at 

Eg ̂  =: 1.2-1.4 eV foi: the reactions N2(X,v'=0-2) + Ar(̂ SQ) —> N2 + Ar"*" 

â (Â2) 

Ekperiment̂ 'b TheoryC'd 

v' = 0 v' = 1 V' '= 2® 

0
 II > v' = 1 v' = 2 

1.2 0.28 + 0.08 26.3 + 4,2 22.9 + 4.3 0.00 17.46 14.41 

4.1 1.01 + 0.25 21.9 + 3.4 21.7 + 4.0 0.01 24.31 19.90 

5.8 1.41 + 0.35 21.7 + 3.3 23.9 + 4.3 • « • * • • • 

8.0 1.59 + 0.40 
(<0.91 

18.8 + 2.8 
(18.7 + 1.6) 

22.7 f- 4.1 
(23.1 + 1.9) 

0.l9 
(0.9) 

26.09 
(22.9) 

30.89 
(28.5) 

14.0 1.93 + 0.40 
(<0.9] 

16.6 + 2.4 
(15.6 + 1.2) 

23.1 H- 4.1 
(24.2 + 2.8) 

. • • 

20.0 2.17 + 4.3 

(1.6 + 0.2) 

14.3 + 2.1_ 
19.7 + 4.4% 
(14.3 _+ 2.4) 

20.6 + 3.6. 
28.4 + 6.3% 
(17.8 + 2.9) 

1.09 
(3.2) 

25.09 
(20.4) 

29.69 
(28.0) 

40.0 4.3 + 0.4 11.6 + 1.8_ 
13.1 + 1.8% 

16.4 + 3.0 
18.5 + 2.6 

3.oh 21.2^ 30.8̂  

80.0 8.8 + 0.67 11.5 + 1.5-
13.6 + 1.7% 

15.5 + 2.5. 
18.3 + 2.3% 

• • • 

L40.0 14.9 4 1.1 15.6 + 1.5_ 
17.0 + 2.1% 

14.3 + 2.1 
16.3 + 2.0% 

... • • • • • • 
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®Tlii:5 work. 

'̂lie values in parentheses are obtained from Ref.3. 

'̂ Reference 7. 

"̂ he values in parentlieses ate obtained from Ref.8. 

V̂alues determined using the absolute values for n̂d values for obtained from 

Ref.11. 

V̂alues determined using the absolute values fro jq and values fro a /̂ffQ obtained from 

Ref.11. 

V̂alues quoted in Ref. 8. 

V̂alues calculated at = 41.2 eV. 

M 
o w 
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measured in the TESICO experiment. We find that the results of the TESICO 

experiment and this work are in excellent agreement, except for CTQ at 

> s and 14 eV. where our values are slightly higher than theirs. 

The absolute value for CTQ increases monotonically from 0.28 A"' at 

Ej, jjj = 1.2 eV to 14.9 at * 140 eV. The absolute value for (T-]_ 

decreases gradually from 26.3 Â  at Ê  = 1.2 eV to 11.5-13.6 Â  at Ê  ̂  

- 80 eV and then increases to 15.6-17.0 Â  at - 140 eV. The absolute 

value for C2 at Eg ̂  = 1.2-20 eV are nearly equal. A decreasing trend for 

ff2 is observed as Ê  ̂  is increased from 20 eV to 140 eV. The values for 

Oyf, v' = 0-2, at Eg Q̂  = 140 eV are equal within experimental 

uncertainties. 

Absolute partial state-to-state cross sections, 

°v'->J'  ̂0-2, for reaction (1) 

The fractions, V = 0-2, of product Ar'''(̂ Pj) forssd by 

reaction (1) at % = 4-320 eV have been measured fay Liao et al.̂ ® Using 

the values of and absolute values for measured in this 

experiment, absolute partial state-to-state cross sections, " Ô-

2, have been determined and are listed in Table II. The values for <̂ yf-̂ 2/2 

are substantially greater than those for , -̂ 2/2 * 
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Table II. Absolute partial state-to-state total cross sections, 

V = 0-2, at Eg m = 1.2-140 eV for the reactions N̂ fX, 

v'=0-2) Ar(̂ SQ) » N2(X,v) + Ar+(2pj) 

Experiment̂ '*) 
Bc.m.GV 

*0̂ 3/2 °0->l/2 *l->3/2 *l-»l/2 

1.2 0.28̂ 0.08 0.0 26.3*4.2 -0.0 
4.1 l.OliO.25 0.0 21.4i3.4 0.5i0.6 
5.8 1.4li0.35 0.0 20.2i3.1 l.SiO.S 
8.0 1.53i0.39 0.06i0.04 16.8i2.5 2.0i0.6 
10.3 1.61±0.38® 0.09i0.04® i5.8i2.4e 2.3i0.6® 
14.0 1.84i0.38 0.09i0.04 14.6i2.2 2.0i0.5 
20.0 2.00i0.40 0.17i0.06 2.2il.8 2.li0.4 

(16.8i3.8)(2.9i0.8) 
40.0 4.0i0.4 0.4*0.1 9.8il.6 1.8i0.4 

(11.2il.6) (2.0i0.4) 
80.0 8.0i0.6 0.8±0.2 9.7il.3 1.8i0.4 

(11.4il.6) (2.2±0.4) 
140.0 13.2il.0 1.7i0.4 13.oil.4 2.6i0.6 

'2->3/2 *2->l/2 

18.8±3.6 3.9±1.3 
18.6±3.6® 4.0±1.3_ 
19.1±3.6 3.8±1.4 
15.9±3.8 3.7±1.2 
(23.3±5.2) (5.1±1.8) 
13.6±2.6 2.8±0.9 
(15.3±2.3) (3.1±1.0) 
12.6±2.2 2.9±0.9 

(3.4±1.0) 
(11.4±1.8) 2.9±0.8 

(14.2±1.9) (2.8±0.7) (13.oil.8) (3.3i0.9) 

ĥis work. 

°The values in parentheses are obtained from values of n̂d ̂ 2 

determined using the values for cq of this work and and C2/cq 

obtained form Ref.l. 

^Po-Foï'onr'o "7 

ĥe vlues in parentheses are obtained from Ref. 8. 

V̂alues estimated using the estimated values for , v'=0i2 at 

^c.m. = 10.3 eV which are interpolated using the values at ^ =8 

and 14 eV. 

'"Values calculated at Ê  ̂  =41.2 eV. 
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TheoryC'd 

*043/2 *0-»l/2 *l-»3/2 *l-»l/2 *2->3/2 *2-»l/2 

0.00 0.00 17.37 0.09 9.06 5.35 
0.00 0.00 24.31 0.56 16.56 3.34 
0.00 0.00 0.00 0.00 0.00 0.00 
(0.08) (0.1) (19.3) (3.6) (23.5) (5.0) 
0.15 0.01 24.86 1.89 25.2 3.94 
0.00 0.00 0.00 0.00 0.00 0.00 
(2.6) (0.6) (16.1) (4.3) (21.5) (6.5) 

2.40f 0.57^ 16.52^ 4.63^ 24.43^ 6.40^ 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 
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DISCUSSION 

Absolute state-selected cross sections, 

, V' = 0-2, for reaction (1) 

The theoretical values for ,V = 0-2, at * 8 and 20 eV 

p 
obtained by Parlant and Gislason zznd the theoretical cross sections at 

ĉ m. = 1-2, 4.1, 8, 20 and 41.2 eV calculated by Spalburg and Gislason̂  

are coupa red to the experimental results in Table I. Due to the fact that 

the former multi-state calculation uses more accurate PES for the [N2 + 

Ar]"*" system, its predictions are expected to be more reliable than those of 

the latter study. We find that the predictions of Parlant and Gislason are 

in satisfactory agreement with the experimental values. The values 

calculated by Spalburg and Gislason for and 02 at Eg_Q̂  ̂ = 8 and 20 eV, 

as quoted in Ref. 8, appear to be too high, an observation consistent with 

a previous conclusion.® It has been pointed out that the higher cross 

sections are the results of the stronger estimated coupling potential used 

in Ref. 7. The small values for ag at low Ê  ̂  consistent with the 

fact that the formation of the least energetic channel 

N2(X,V=0) froîû  ̂AïĈ Sq) is sndothennic by 0.179 eV. The theory 

correctly oredicts the increasing trend for an as E„ _ is increased. 

However, the theoretical values for UQ at Ê  = 1.2-41.2 eV obtained by 

Spalburg and Gislason are lower than the experimental values and the values 

predicted in Ref. S. The theoretical values'̂  for c- and «T2 ®c.m. " 

eV are substantially lower than the experimental values. The observed 



www.manaraa.com

108 

trends for ê . 2̂ ss a function of also are different from those 

predicted in Ref. 7. The predicted value for c-̂  exhibits a maximum at  ̂

O 1 f rw n̂/̂ foacoe ac TT 4c 4 r>r*T*oaca/̂  

at Eg = 1.2-8 eV and it remains approximately constant for Ê  = 8-

41.2 eV. At Eg >8 eV, the calculated values for m̂d <̂ 2 of Ref. 7 are 

greater than the experimental cross sections. 

The multi-state calculation of Spalburg and Gislascn̂  used estimated 

isotropic PES. They argue that since the most iiroortant transitions take 

place at large atom-diatom distances, the anisotropy of the potential is 

relatively uninçortant. This argument has been found to be incorrect in the 

recent calculation of Ref. 8, v̂ ich shows that the cross sections for 

reactions (1) and (2) depend strongly on the orientation of the atom-diatom 

pair. 

The binding energy of the (Ar"N2)"̂  conrolex is -1 eV.̂  ̂Recent studies 

on the vibrational relaxation of diatomic ions reveal that the relaxation 

rate constant scales with the binding energy of the collision oair.21'22 

low Eg jjj , the strong binding energy between and Ar should have a 

significant effect on the cross section of reaction (1). The ab initio FES 

used in Uie calculation of Ref. 3 assuiûe a constant ÎY-N distance at all 

atoiû-diatom distances. At higher Eg ̂  , if electron transfer is mostly due 

to transition at large atom-diatom distance- the perturbation introduced by 

varying the N-N distance may not be important. However, the dynamical 

effects induced by the vibrational motion is expected to be more inçortant 

at Ic:; Eg jjj . In order to account for the binding energy' effect 2tnd the 

dynamic effects induced by the vibrational motion, and to inçrove the 
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theoretical predictions at low Eg ̂  , it is necessary to use accurate PES 

which have been calculated by varying the N-N bond distance as well as the 

distance between Ar and N2 at many atom-diatom geometries. 

Absolute partial state-to-state cross sections, 

Cy'-M' V = 0-2, for reaction (1) 

The theoretical values for °'v'-»l/2' " 0-2, at Ê  m̂  = 

8 and 20 eV reported in Ref. 8 and those at Ê .m. *.1, 10.3, and 

41.2 eV predicted in Ref. 7 are included in Table II. We find satisfactory 

agreement between our experimental observations and the theoretical 

predictions of Ref. 8 at Eg ̂  =8 and 20 eV. The theoretical values for 

ffO-»3/2 of Ref. 7 are lower than the experimental values. Similar to the 

conparison between the experimental and theoretical values for and 2̂» 

the theoretical values for 1̂̂ 3/2 cr2-̂ 3/2 ĉ.m. ̂ ^̂ .3 and 41.2 eV are 

higher than the experimental results, while the theoretical value for 

'̂ 1-̂ 3/2 ĉ.m. = 1-2 eV is substantially lower than the experimental 

Value • 

Consistency of nsasured absolute state-to-state 

cross sections for reactions (1) and (2) from 

the consideration of microscopic reversibility 

From the consideration of microscopic reversibility,̂ 3 we have 

l̂5l"v'-»Jv'%' ~ ̂ 2̂ 2"Jv̂ ''"2' 
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Here is the asynçtotic reactant relative kinetic energy, E2 is the 

asynçtotic product relative kinetic energy, ĝ  is the degeneracy for the 

reactant state, 92 is the degeneracy for the product state, and -v'-*jv'̂ l' 

and are the state-to-state cross sections for reaction (1) and 

its reverse at E-̂  and E2, respectively. If the degeneracies due to the 

rotational states of N̂ CX) and are ignored, the values of ĝ  and g2 

for reaction (1) are equal to the degeneracy of the electronic state (̂ 2+) 

of N2 and that of spin-orbit state (̂ Pj) of Ar"*", respectively. 

Absolute values for 53̂ 2 0->l selected Eg have been determined 

by Liao et al.̂ O with accuracy. According to theoretical studies, the 

values for ffo-»3/2 <11̂ 3/2 overwhelmingly dominated by 0 

0' respectively. Assuming 0 = '0->3/2 »l->3/2 0 = 'l->3/2' 

Eq. (5) becomes 

°3/2 0-»v'(^2^ " (Ej^/2E2) ffo->3/2^®l^ 

Using the values for ?o->3/2 listed in Table II, we have calculated values 

for agy2 0̂ '' v' * 0 and 1, at Ê , ̂  ~ 1-41.2 eV. Tables III cooipares the 

— — —  ̂ - - — — ^ f  ̂ 3̂ 1  ̂1 » n  ̂̂  ̂ 3̂ # m  ̂̂  \ *V  ̂VCl±UCb J-Ui. 02y2 0~>v''  ̂ — V cuiu X/ uoxuuj.cil.'CUi uoxiî  uiiu 

experimental values obtained in Ref. 10. The predicted and experinsntal 

values are in good agreement except at Ê  _ = 10.3 eV vrfiere the predicted 

value for 03̂ 2 0->i is slightly higher than the experimental value. 

The theoretical calculation of Ref. T also reveals that at  ̂— S-

41.2 eV, Ar'''(̂ P3y2) + N2(X,v=l) is the predominant (>95%) product channel 

in the reaction of N2(X,v'=2) + Ar(*Sn). Assuming 02->3/2 ~ '̂ 2-»3/2 1' 



www.manaraa.com

Table III. Comparison of experimental values and predicted valueŝ  for 

at Eg ̂  = 1.2-41.3 eV from the consideration of microscopic reversibility 

*̂ 3/2 0->0 "3/2 0->l 

ICg jjj (eV) Predicted Experimental'̂  Predicted Experimental̂  

1.2 0.16 + O.O5C 0.0 + 1.5 12.2 + 2.0d 12.3 + 2.2 
- 0.0 

4.1 0.53 f 0.13® 0.0 + 1.5 10.5 + 1.7̂  12.7 + 2.2 
- 0.0 

10.3 0.82 + 0.19 0.0 + 1.3 7.9 + 1.2 12.0 + 0.4 
- 0.0 - 2.0 

41.2 2.0 + 0.2 2.4 + 1.1 4.9 + 0.8 1.2 + 1.9 
5.6 + 0.8 

V̂alues calculated usin<j Eq. (6) (see text). 

R̂eference 10. 

T̂he predicted value at =1.04 eV. 

"̂ 'he predicted value at Ê .m. ~ 1.29 eV. 

®The predicted value at Ê  ̂  ̂ = 3.94 eV. 

%he predicted value at Ê  ̂=4.19 eV. 
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the values for 2->2 ĉ.m. ̂  eV have been calculated 

using Eq. (5) and conçared to the theoretical predictions of Ref. 7 in 

Table Tv". The theoretical predictions are found to be higher than the 

calculated values. 
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Table IV. Cortçarison of theoretical and predicted valueŝ  for -̂>2 

at = 8, 20, 40 eV from the consideration of 

microscopic reversibility 

°3/2 1^2 
„ (eV) 

Predicted Theoretical̂  

8 9.3 + 1.8 12.2 

20 8.4 +1.5 

11.6 + 2.7 

40 6.8 + 1.3 11.6 

7.7 + 1.2 

V̂alues calculated using Eq. (6) (see text). 

R̂eference 7. 
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CCNCLUSIŒS 

Absoluts values for and ~ 0-2' have been determined 

over the range of 1.2-140 eV. The state selected cross sections at 

ĉ.m. ~ and 20 are in agreement with the results of the previous 

TESICO experiment.̂  The absolute partial state-to-state cross sections 

obtained in this experiment are found to be consistent with the absolute 

state-to-state cross sections for reaction (2) at % = 1.2-41.2 eV 

reported recently by Liao et al.^® The experimental results at E^ =8 

and 20 eV are in better agreement with the results of the calculation of 

Parlant and Gislason® than with the predictions of the earlier calculation̂  

v,̂ iich used estimated isotropic PES for the [N2 + Ar]"*" system. 

This study, together with the recent measurements by Liao et al.̂ O'll 

has provided detailed experimental data over a wide Ê  ̂  range for the [N2 

+ Ar]"*" electron transfer system. We hope these experimental studies will 

stimulate a more rigorous theoretical study in the future. A major 

improvement of the future theoretical calculation can be attained by using 

more accurate PES for the [N2 + Ar]"*" system at many atcm-diatcm 

interaction geometries. 
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PART II. 

ABSOLUTE SPIN-ORBIT-STATE EXCITATIŒ CROSS SECTIWS 

FOR THE REACTIOIS 

Ar'*'(̂ ?2y2) Ar(̂ SQ) AiiD + N2(A,V=0) 
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INTRODUCTION 

Energy transfer plays an inroortant role in nearly all aspects of 

fundamental and applied research. Due to the advancements of molecular beam 

and laser technology, microscopic state-to-state cross sections for many 

inelastic scattering processes involving neutral atoms and molecules have 

been measured.Although inportaint strides*"® have also been made in this 

area in ion chemistry, the progress of state-to-state energy transfer 

studies in ion-molecule collisions is still behind that in neutral 

experiments. Recent flow tube experiments* using the monitor ion method 

have provided extensive rate data on the vibrational relaxation collisions 

of many diatomic molecular ions with various quenching gases as a function 

of collision energy. Nevertheless, detailed microscopic state-to-state 

inelastic cross section data for ion-molecule collisions remain scarce. 

One of the difficulties in state-to-state studies of ion-molecule 

interactions is the preparation of state-selected reactant ions. The 

intensity of state-selected ions produced by single-photon ionization using 

laboratory vacuum ultraviolet (VUV) discharge lançs of synchrotron 

i c 1 t /"inS i final i 

experiment very difficult. Recently, Liao et have developed an 

internal state sensitive charge exchange detector. By measuring the 

reactivities of sinçle product atomic or molecular ions with different 

4-V»otr Katro Vsoor> o rxovf rwrm oc f'Hp 

electron transfer reactions of K2(v'=»0-1) + H2(v=0),7,8 Ar'*',1/2'' 

Ar(̂ So),̂  Ar+(2p2y2.i/2) + N2(X,v=0),̂ " N̂ {X,V'=0-2) + ArC-̂ Sg) 
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"̂*"̂ ^̂ 3/2,1/2̂  H2(v=0),13 and H2{v'=0-4) + Ar(̂ SQ).̂  ̂The charge exchange 

detector is highly sensitive, which allows the vibrational state 

distribution of electron transfer product ions to be measured with as low 

as 2-10 product ions formed per sec.̂ O'll 

In order to extend this method for state-to-state excitation and 

relaxation cross section measurements in ion-molecule collisions, we have 

developed a new triple-quadrupole double-octopole photoionization 

apparatus. In this comnmnication, we present preliminary results on the 

absolute state-to-state total cross section measurements of the reactions 

Ar̂ (̂ Pgy2) + ATĈ SQ) —> Ar̂ (̂ P2y2) Ar(̂ SQ) (1) 

Ar+(2p3/2) + N2(X,V-0) —> Ar+(2p2/2) + N2{X,v) (2) 

Absolute cross sections, P3/2-*l/2' reaction (1) have been reported 

previously. The conparison of experimental results of this study and Ref. 

15 allows the performance of the apparatus to be evaluated. The recent 

multi-state calculation̂  ̂finds the cross sections, <̂ 2/2-̂ 1/2' reaction 

(2) to be surprising large. The high value for «̂ 3/2->l/2 reaction (2) has 

been attributed to the mutual interactions of electron transfer Ar + 

states with the spin-orbit states of Ar"̂ . The cross sections obtained for 

reaction (2) in this experiment provide a test of the theoretical findings. 
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EXPERIMENTAL 

The triple-quadrupole double-octopole photoionization apparatus used 

in this study has been developed from the tandem photoionization mass 

spectrometer.,18 ̂ hg detailed design of this apparatus will be described 

in a separate publication. Figure 1 shows the cross sectional view of the 

apparatus. It consists essentially of a 0.2 m vUv monochromator (McPherson 

234), a VUV discharge lanç, a tungsten photoelectric VUV light detector, 

three quadrupole mass filter (OMF), two ratio frequency (rf) octopole ion 

guidê  ̂reaction gas cells, a supersonic jet production system, and a 

variant of the Daly-type scintillation ion detector.̂ 0 

The reactêint Ar'̂ 'l̂ Pĵ ) ions are prepared by photoionization of an Ar 

atomic beam at the wavelength (X) of 785 A. The wavelength resolution used 

is 3.5 A (FWKK). The neutral Ar beam is produced by supersonic expansion 

through a 50 /um diameter quartz nozzle at a stagnation pressure of ~68 

Torr. The ions formed at the photoionization region are 

extracted perpendicular to the neutral Ar beam and selected by the first 

QMF (4) before colliding with Ar or N2 in the first rf octopole ion guide 

reaction gas cell (S). The laboratory collision energy defined to 

be the difference in potential between the photoionization region and the 

first rf octopole reaction gas cell. After the collisions of Ar'*' 

with Ar or N2 in the first reaction gas cell, a small fraction of 

Ar'n't ~P3/2) ions have been excited to the ̂ 1̂/2 state according to reactions 

(1) and (2). Here we denote the fractions of Ar"*" in the ̂ 3̂/2 2nd ̂ 1̂/2 

states to be ̂ 2/2 1̂/2- respectively. The Ar"*" ions in a mixture of 
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Figure 1. Cross-sectional view oi: bhe triple-quadrupole double-octopole photoionization 

appeiratus. (1) Photoionization region, (2) nozzle, (3) to freon-trapped 6 in. 

diffusion |[Junip (DP), (4) the first quadixipole mass filter (QMF), (5) to liquid-

nitrogen -trapped 6 in. DP, (6) the first QMF chamber, (7) the first ratio 

frecjuency (rf) octopole ion guide chamber, (8) the first reaction gas cell, (9) the 

- firjjt rf octopole ion guide, (10) to LNpr̂ rapped 6 in. DP, (11) the second QMF, 

(12) to LN2-trapj)ed 4 in. DP, (13) the second reaction gas cell, (14) the second rf 

octopole ion guide, (15) the second rf octopole ion guide chamber, (16) the third 

QMF, (17) detector chamber, (18) plastic scintillator window, (19) photomultiplier 

tube, (20) alu(ninu)n ion target, (21) to LN2-trapped 2 in. DP 
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^̂ 2/2 ^̂ 1/2 states are then selected by the second ®1F (11) amd further 

react with the H2 probing gas according to the reaction 

Ar+(̂ Pj) + H2 —> Ar + (3) 

at = 10 eV in the second reaction gas cell (13); and the total cross 

section, cf reaction (3), characteristic of Ar''"(̂ Pj) passing through 

the first reaction gas cell, is measured using the procedures described 

previously., 12,17,18 ĝ he value for the of the probing reaction (3) 

is determined by the potential difference between the photoionization 

region and the second reaction gas cell. The spin-orbit-state-selected 

cross sections, *̂ 1/2' reaction (3), have been shown̂ '̂̂ '̂̂  ̂to 

be substcintially different at = 10 eV. 

For the direct excitation processes, such as reactions (1) and (2), 

at sufficiently high Ê ĝ , the laboratory velocities for product Ar''"(̂ PjL/2) 

ions are expected to be only slightly different from those of Ar'''(̂ p3y2) / 

where product Ar'''(̂ Pj) of N2(X,v') ions resulting from the electron 

transfer processes 

Ar(̂ So) 4- A:  ̂Ar(lSo} • 

Ar+(̂ P2/2) + N2(X,v=0) —> Ar(̂ SQ) + N̂ (X,v (5) 

will have slew velocities, close to thsrosl velocities. For s of >10 

eV for reactions (1) or (2), slow electron transfer product ions formed in 

the first reaction gas cell cannot enter the second reaction gas cell 
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because the second reaction gas cell is biased at a positive potential with 

respect to the first reaction gas cell. 

Since,- under the thin target conditions, we have the relation. 

*3/2 + ̂ 1/2  ̂

*3/2'3/2 + *l/2®l/2 = 

^̂ (̂ 1̂/2) ' *3/2 be calculated by the equation 

*3/2 = " "̂ 1/2̂  / ('3/2 " '1/2) 

The values for a-̂ /l '1/2 been determined using the second 

reaction gas cell vAien the first reaction cell is enpty. 

Furthermore, we have the relation 

I - iiy2 = Ioexp[-nl(CTCT + °3/2-*l/2)̂  

= lexp ( -nl <13/2̂ 1/2 ) (9) 

or 1 - (̂ 1/2/̂ / = *3/2 

- ex?(-nl-3/2̂ i/2' 

Here In is the intensity of Ar"*" observed when the first and second gas cell 

are ençty. I is the intensity of Ar"*" after Ar or N2 is introduced into the 

first reaction gas cell (I includes the intensitŷ  --

Ar'*'(̂ ?3/2) resulting from reactions (1) or (2) but not that of electron 

transfer product Ar+(̂ Pj)); represents the electron transfer cross 
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section of reactions (3) or (4); n is the number density of Ar (or N2) in 

the first reaction gas cell; and 1 is the length of the first reaction gas 

cell. 3y sseasuring v.-e have calculated ?3/2-»l/2 --̂ -5 (--s) 

3̂/2̂ 1/2 " (-l/nl)ln(X3y2) (11a) 

= Xi/2/hl (lib) 

Equation (lib) is valid for thin target conditions. 

The Ar or N2 pressure used in the first reaction gas cell ranges from 

-2 to 5x10"̂  Torr. The H2 probing gas pressure used in the second reaction 

gas cell is -2x10"̂  Torr. 

The most important condition for the success of this experiment is 

the use of the rf octopole ion guides vAiich make possible the collection of 

nearly all product Ar'''(̂ P3̂ ) ions of reaction (1) or (2). We find that the 

attenuation of reactant Ar(̂ P3y2) ions, -vdien N2 is introduced into the 

first reaction gas cell, is consistent with the estimate calculated using 

the electron transfer cross section measured previously in our laboratory. 
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RESULTS AND DISCUSSION 

The absolute values for <̂ 3/2̂ 1/2 reaction (1) measured in this 

study at = 60, 130, and 200 eV are conpared to the experimental 

results obtained by Itoh et al.̂  ̂in Table I. Both experiments show that 

53/2̂ 1/2 of reaction (1) increases as Ê gjj is increased, an observation 

consistent with the theoretical prediction.In the experiment of Itoh et 

al. the value for 3̂/2̂ 1/2 measured by observing the energy loss of Ar"*" 

along the reactant Ar"*" beam direction with an acceptance angle of 0.45®. At 

low Eigjj, where the angular spread of inelastic scattered ions 

is >0.45°, the values for obtained previously are likely to be 

lower limits. As Ê g]̂  is increased and the angular spread of product 

Ar'̂ (̂ Piy2) ions becomes narrower, the value measured in the energy loss 

experiment is expected to be closer to the true value for ff3/2->l/2* 

expectation is in accord with the values for °2/2-*l/2 determined here are 

higher than those of Ref. 15 and that the difference between the two 

measurements decreases as is increased. Although our values for 

"3/2->l/2 higher, they are still lower than the theoretical predictions. 

rrncl ^ -î T ï-inc tjj-î T 1 Ko -î TnTM^ntro/^ î f 

accurate ab initio potential energy cur/es for Art are used in the 

calculation. 

Table II listed the values for ̂ 2/2 "̂ 3/2->l/2 l̂ab ̂  eV for 

reaction (2) obtained in the N2 gas cell pressure (P) range of 2.38-

4.65x10"̂  Torr. The average value for ff3/2->l/2 l̂ab ̂  is 2.18+-

0.25 A"̂  vmich is found to be substantially greater than the excitation 
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Table I. Absolute spin-orbit-state excitation cross sections, 

°3/2-*l/2' the reaction Ar"*"(̂ P3̂ ) + Ar(̂ SQ) > 

Ar+(̂ P2/2) + Ar(̂ So) -= 60, 130, and 200 eV 

Elab(GV) 

60 130 200 

C3/2̂ 1/2(a2)3'̂  0.61 + 0.06 1.58 + 0.28 2.14 + 0.30 

(0.31) (1.1) (2.0) 

T̂his work. 

ĥe values in the parentheses are obtained from Ref. 15. 
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Table II. Absolute spin-orbit-state excitation cross sections, 

"̂ 3/2->1/2' the reaction + N2(X,v=0) > 

Ar+(2pi/2) + N2{X,V) at = 25 eV 

"̂ 3/2-̂ 1/2 

2.38 0.9894 2.42 

2.79 0.9865 2.53 

3.31 0.9845 2.09 

4.06 0.9877 1.34 

4.65 0.9738 2.53 

^̂ 3/2"̂ 1/2̂  2.18 + 0.25 

(1.98̂ ; 3̂ )̂ 

ĥe pressure used in the first reaction gas cell, 

ĥe fraction of Ar"*" in the ̂ 3̂/2 state. 

"-The theoretical value obtained from Ref. 15. 

"̂ he theoretical value obtained from Ref. 24. 

P(10-4 Torr)® 
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cross section for reaction (1) at = 60 eV. The experimental value is 

in agreement with the calculated values (see Table II) obtained by Spalburg 

and Gislason̂ ® and Parlant and Gislason.̂  ̂The calculation of Parlant and 

Gislason used ab initio potential energy surfaces for the [Ar + N2]''" system 

and is expected to be more accurate. 

The value for 3̂/2-̂ 1/2 l̂ab of reaction (2) has also been 

obtained from the slope of a In(%3y2̂   ̂plot. The value of 2.31 A thus 

determined is in good accord with the average value. 
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CCNCLUSIOIS 

We have demonstrated a new experimental method which allows the 

determination of absolute state-to-state excitation cross sections of 

reactions (1) and (2). The detailed fine structure excitation and 

relaxation cross section measurements for the reactions Ar'''(̂ Pgy2,i/2) + 

N2(C0,02,N0,Kr, and Ne) are in progress. With the similar experimental 

arrangement eind procedures, it is possible to determine absolute state-to-

state vibrational relaxation cross sections for many sinple molecular ions 

in collisions with various quenching gases. 
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APPENDIX 

The Design for Quantum State Excitation or 

Deexcitation Experiments with the Double-Gas-Cell 

Arrangement of the Tandem Mass Spectrometer 

The following procedures are designed for experiments and the 

corresponding data analysis for the measurement of absolute collision 

induced excitation or deexcitation total cross sections using the triple-

quadrupole double-octopole photoionization tandem mass spectrometer. This 

appendix is divided into four parts, based on the four possible reactions 

of interest. The first part involves all four possible reactions, and the 

equations used in general form throughout this paper are derived therein. 

The remaining three parts are special cases v̂ iere one or more of the 

possible reactions is not involved. All variables which are assumed given 

can be measured by the method mentioned vAien they first appear in the text. 

Consider the following reactions 

A+* + B • -> C+ + D (Rl) 

A+ + B • 'r -> E+ + F (R2) 

A+* + B • -> A+ + B (R3) 

A+ + B "'E 
-> A"̂ * + B (R4) 

vdiere (Rl) and (R2) are the reaction channels for the primary ions in the 

excited state and the ground state respectively, and which include the 

charge transfer; (R3) is the quantum state relaxation channel; and (R4) is 

the quantum state excitation channel. 

The probing reactions are 
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a 
A"̂  + M > M" + A (R5) 

A+* + M —9lly M+ + A (R6) 

Values for the cross sections for reactions (Rl), (R2), (R5) and (R6) 

must be available for the following experiments. 

Case 1 ; Measurement of op with all of the reactions involved 

When the upper gas cell is filled with the probing gas and the lower 

gas cell is ençty the measurements result in a mixed cross section for 

reactions (R5) and (R6) multiplied by an arbitrary constant 

m̂,w/o °̂m,w/o 

= CCXgCpj. + XgCpr*) (la) 

When the test gas is sent into the lower gas cell and measurements 

nsde under the scz= conditions as before, the result is also a mixed cross 

section for both reactions (R5) and (R6) multiplied by the same constant as 

in Eq. (la) 

m,w Cff, m,w 

(̂̂ a'̂ Dr ê®Dr*̂  (2a) 

The distribution coefficients Xg and Xg are for the reactant ions at ground 

state and excited state respectively before the collision in the lower gas 

cell, râile xl and xl are for after the collision. Values for X_ and X_ y = y c 
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must be available for carrying out this experiment. They have the 

relationship 

Xg + Xg = 1 (3a) 

Xg + Xg = 1 (4a) 

Dividing (2a) by (la) yields 

m̂,w ^̂ ĝ'̂ pr °̂̂ pr*) 
(5a) 

m̂,w/o ^̂ ĝ'̂ pr ê°pr*̂  

where Xg, considering Eg. (4a), is the only unknown, and which can be 

calculated by 

4  =  W 9 P ^  e P r -  p . .  

9 V - 'pr* 

The flux of the reactant in the ground state after the collision in 

the lower gas cell,- iCA"*"),- can be expressed as 

ifA"*") = io(A^)exD[-(o^ + aT;.)nl] 

+ io(A+*)(l - exp(-ffĵ l) (7a) 

where io(A'̂ ) and io(A'̂ *) are the fluxes of the reactant at the ground state 

and the excited state entering the lower gas cell, and the excitation cross 

section, cg, can be measured by the method discussed in Case 4. 
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After dividing (7a) by the total primary ion flux after the collision 

in the lower gas cell, I, the new distribution coefficient can also be 

written ss 

Xg = Xg(lo/I)exp[-((jj. + og)nl] 

+ Xg(Io/T)[l — exp(—ô nl)] (8a) 

vAiere lo is the total flux of reactant before the collision with the 

neutral gas B in the lower gas cell. Hence lo emd I can be expressed as 

lo = io(A+) + io(A+*) (9a) 

I - i(A+) + i(A+*) 

= Xgloexp(-CT̂ l) + XgIoexp(-ffj.*nl) (10a) 

Substituting Eg. (10a) into Eq. (8a), we obtain 

X„ = 
Xgexp[-(aj. + ag)nl] + Xg[l - exp(-ô )] 

O  Y  o v r v / — n l  ̂  J .  Y  o v r \ ^ — . r » l  \  

(11a) 

Rearranging Eq. (11a) yields Eq. (12a) from ̂ ich the quantum state 

relaxation cross section can be calculated. 

CR = Infl - ̂:Xg(X_exp(-ff_nl) 

+ Xoexp(-ĉ *nl)) - X̂ exp[-(Cr+F?)nl]]} 
' -  ̂ (12a) 
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Case 2 ; Measurement of gg with only (R2) and (R4) involved 

In this case the primary ion is prepared in the pure ground state, 

vihen the upper gas cell is filled with the probing gas and the lower gas 

cell is empty, the measurements result in the cross section of reaction 

(R5) multiplied by an arbitrary constant 

m̂,w/o ̂  *-®pr (-i-sa} 

The measurements with the gas B in the lower gas cell give the same 

result as expressed by Eq. (2a). 

Since Xg equals unity in this case, Eqs. (5a) and (6a) can be 

rewritten as 

Vw _ (̂̂ g'̂ pr + ̂ 'pr*) 

m̂,w/o "̂̂ pr 

x' _ (̂ m,ŵ m,w/o)̂ pr ~ '̂ pr* 

" -pr ~ "pr* 

Since the reactions (R2) and (R4) are the only channels ̂ .ich affect 

the flux of the primary ion 

i(A'̂ ) = io(A'̂ )exp[-(ffj. + cg)nl] 

= Ioexp[-((j_ + ff2)nl] (16a) 

Dividing (15a) by the total pricery ion flux after the collision in 

the lower gas cell, I, the new distribution coefficient can be written as 
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Xg - (Io/I)exp[-{aj. + ag)nl] (17a) 

vAiere 

I " loexp(-â ) (18a) 

Simplifying Eq. (173.) gives 

- expî-dgnl) (19a) 

From Eq. (19a) we obtain 

In(X̂ ) - -(Tgnl (20a) 

Therefore, the quantum state excitation cross section can be calculated 

from either of the following equations 

- In( x ' )  (21a) 

-1 dln(X-) 
(Tf * (22a) 
" 1 dn 
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Case 3 ; Measurement of gp with only (Rl) and (R3) involved 

Following the same arguments as were used in Case 2, the quantum 

state relaxation cross section can be calculated from either of the 

following equations. 

, 
ffR = - In(Xg) 

nl 

-

-1 dln(Xg) 

1 dn 

(23a) 

(24a) 

Case 4 : Measurement of gp with (Rl), (R3) and (R4) involved 

Since reaction (R2) does not exist, Eq. (12a) can be modified with gj. 

= 0 to get the following equation to calculate the quantum state relaxation 

cross section. 

(̂ R = ln{l [̂Xg(Xg + Xgexp(-ffj.*nl)) 

Xgext/( -ĝ nl ) J ; (25a) 
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CŒCLUSimS 

A new icn-Kcleculs reaction apparatus, %tiich consists of a 

photoionization source, a tandem mass spectrometer, and a radio frequency 

(rf) octopole reaction cell, has recently been developed. Absolute total 

cross sections for the reaction H2"*'(VQ') + H2(vg"=0) —> + H, have been 

measured as a function of the vibrational state of reactant ̂ 2̂ , tAiere 

Vo'=0-4, over the center-of-mass collision energy range of 0.04-15eV. The 

experimental results are conpared with phenomenological cross sections 

obtained in previous single gas cell studies, the quasiclassical trajectory 

calculations of Stine and Muckerman, and the recent similar calculations of 

Eaker and Schatz. The absolute total cross sections measured for VQ'=0 and 

3 at Eg =0.5, 1, 3, and 5 eV are found to be in agreement with 

"trajectory surface hopping" calculations which include nonadiabatic 

surface hopping throughout the reaction. 

Absolute spin-orbit-state-selected total cross sections for charge 

transfer reactions ̂ (̂̂ 3̂/2) + N2(X,v=0) and + N2{X,v=0), 0-3̂  

and oiy2' ̂ respectively, at the ĵ i. "̂ 9̂® 0.25-115.3 eV have also been 

iiRroawiCLi uaziiy wic acuuc . zuc ui- UQ ̂  — 

4.1, 10.3, and 41.2 eV and 41.2 eV are in reasonable agreement with 

the theoretical cross sections. However, the experimental values for 3̂̂ 2 

at 1.2 eV and oi/2 at 1.2, 4.1, and 10.3 eV are approximately a factor of 

two higher than the theoretical predictions. A model analysis, v.wich takes 

into account possible collision induced spin-orbit mixings of the reactant 

Ar"*" states in the rf octopole gas cell, shows that the values for (̂ 1/2/(̂ 3/2 
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and (̂ 2/2 determined using the ion beam-rf octopole gas cell arrangement can 

be strongly susceptible to gas cell pressure effects vrfiereas the 

experimental values for  ̂are reliable. The values for c-i ̂  deduced by 

multiplying the values for agy2 and the ratios determined in the 

crossed ion-neutral beam experiment are in agreement with the theoretical 

cross sections. Both and are found to increase as is 

increased from 41.2 eV. This observation is interpreted as due to the 

formation of in the Â IÎ  state at high . 

With the triple-quadrupole double-octopole photoionization tandem 

mass spectrometer, absolute state-selected total cross sections, , V = 

0 and 1, for reaction N2(X,v'=0,l) + Ar(̂ SQ) —> N2{X,v) + ̂ (̂̂ '̂ 1/2,1/2) 

(reaction (1)) over Ê  ̂  range of 1.2-140 eV have been measured. These 

measurement, together with the relative values for , v' = 0-2, and spin-

orbit-state distributions of product Ar"*" ions determined using the crossed 

ion-neutral beam photoionization apparatus, allow the determination of the 

absolute values for <t2 â d partial state-to-state cross sections, v' 

=0-2, for reaction (1). Absolute values for CT̂ ,, V' = 0-2, at Ê  Q̂  = 8 and 

20 eV are in good agreement with those determined previously by the 

threshold photoelectron secondary ion coincidence method. Absolute values 

lor Cy,J, v = u—ac =0 sno ̂ 0 ev are axso founo to œ in 

satisfactory accord with the predictions of the semi-classical multi-state 

calculation v̂ ich uses the ab initio potential energy surfaces of the [N2 + 

Ar]"*" system. Experimental state-to-state cross sections obtained in this 

study are consistent with those for the reaction, Ar''"(̂ Pgy2) + N2(X,\;=0) — 

> Ar(-'-Sn) + N2(X,v'), from the consideration of microscopic reversibility. 
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Using the triple-quadrupole double-octopole apparatus, absolute fine-

structure transition cross sections for the reactions + Ar and 

Ar'̂ (̂ Pgy2/ N2(X,v=0) at laboratory'- collision energies of 25-200 eV have 

been measured. The results are in satisfactory agreement with theoretical 

prediction and a previous experimental study. 

The experimental approach discussed in this dissertation can be 

further improved by coupling with laser and coincidence techniques. The 

detailed experimental cross-sectional data obtained by using the tandem 

photoionization mass spectrometer provide more information to complement 

theoretical consideration. 
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APPENDIX A. 

SELECTED COMPUTER PROGRAMS 
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I. The programs for the operation of the photoionization mass 

spectrometer. 

1. Take single data point. 

C TDATA.FOR takes data points n(I) times at given wavelengthes WL(I) and 
C mass MASS(J). The dimensions of array WL and N are the same and no 
C larger than 50. The format for input of the number of elements and the 
C values of VJL and N is defined in file NCXlftME.FOT. The input data should 
C exist in file lOîAME.DAT. The output data will be found in file 
C NONAME.LOG. 
C 
C At every stop for continue or exit, the content of file NCNAME.DAT can 
C be C changed to obtain different data composition. 
C 
C Program : 

INTEGER RTNCOD, N(50), MASS(50) 
REAL WL(50) 
INTEGER CLIN, CLOUT, FLAG 
BYTE BUFFER(60), BUFERl(60), STRING(60), DA 
OPEN(UNIT=33, NAME='DAT:TnATA.LOG', TYPE='NEW', 

F CARRIAGECCMTROL='FORTRAN') 
CALL IMRINI(CLIN,CLOUT,BUFFER,BUFERl,60,RTNCOD) 

150 OPEN(UNI'P=22, NAME='TDATA.DAT', TYPE='OLD') 
READ(22,3) DA 
READ(22,*) NMASS 

READ(22,*) NUM 
READ(22,*) (N(I), 1=1,NUM) 

 ̂̂  J. \ /».«̂  /  ̂\ V 1 \ 

TYPE 2 
 ̂r'r̂ rrryrn O CfrroTxv* M f 
WRITE(33,4) STRING 
TYPE 4, STRir̂ G 
WRITE(33,*) ' ' 
TYPE*, ' ' 
DO 300 K = 1,NUM 

CALL IMRWL(CLIN, CLOUT, BUFFER, BUFERl, 60, WL(K)) 
1 nn • _ 1 cc T/V .LW V X — .J. 

n^TT Tyro-pjt^c f nr T\r m njtrn PT or ICC'DL CMOTXTC I I II I A* \ / XWFJUWX / WWT T Y 
F 60,DA,MASS(I), 33) 

DO 200 J = 1,N(K) 
CALL IMRSDP(CLIN,. CLOUT; BUFFER,-BUFERl, STRING; 

F 60, 33) 
200 CONTINUE 
100 CĈ TINUE 
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300 CCKTINUE 
CLOSE(UNIT-22) 
CALL BELL 

2 FORMAT(//X,'Enter the conditions (< 60 characters) : ') 
3 FORMAT(60Al) 
4 rO«nAT(X,60Al) 
130 TYPE 1 
1 FORMATC 'Choose one by number :',//7x,'l. Continue.', 

F/7x,'2. Exit.'//x,'Number : ',$) 
ACCEPT*, FLAG 
IF(FLAG .EQ. 2) GOTO 120 
GOTO 150 

120 CLOSE{UNIT=33) 
END 
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2. Scan mass spectrum. 

C MASCAN.FOR sans the mass spectrum. 
INTEGER CLIN, CLOUT, FLAG, STARTM, RINCOD 
BYTE BUFFER(50), BUFERl(60), SxRING(60), DA 
OPEN(UNIT=33, NAME='MASCAN.LOG', TYPE='NEW') 
CALL IMRINKCLIN,CLOUT,BUFFER,BUFERl,60,RINCOD) 

14 OPEN(UNIT=22, NAME='MASCAN.DAT', TYPE='OLD') 
READ(22,206) DA 

301 READ(22,*,END=302) STARTM, LASTM, INT 
DO 300 MASS = STARTM, LASTM, INT 

CALL IMRMAS(CLIN,CLOUT, BUFFER,BUFERl, 
F STRING,60,DA,MASS,33) 

CALL IMRSDP(CLIN, CLOUT, BUFFER,BUFERl, 
F STRING, 60,33) 

300 COJTINUE 
GOTO 301 

302 CLOSE(UNIT=22) 
CALL BELL 

130 TYPE 201 
ACCEPT*, FLAG 
IF(FLAG .EQ. 2) GOTO 120 
GOTO 14 

201 FORMAT(/X,'Choose one by number :',//7x,'l. Continue. 
F ' point.'/7x,'2. Exit.' 
F //X,'Number : ',$) 

203 FORMAT(/X,'Starting number for the mass scan : ',$) 
204 FORMAT(/X,'Ending number : ',$) 
205 FORMAT(/X,'Interval of the numbers : ',$) 
206 FORMAT(lAl) 
IZU ULiUÛE,l,UWXi=00; 

END 



www.manaraa.com

146 

3. Subroutines. 

C SUBROUTINE CLEAR clears the character string STRING. The dimension of 
C the strina should be qiven by the calling program. 
C 
C Program : 

SUBROUTINE CLEAR( STRING,N) 
BYTE STRING(N) 
DO 100 I = 1,N 

STRING(I) = 0 
100 COJTINUE 

RETURN 
END 
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C SUBROUTINE IMRMAS sets the mass for the lower, middle, upper 
C quadrupoles by sending integer numbers to the corresponding D/A's. The 
C range of the numbers is 0 to 4095. 
C Cie following characters are used to indicate the quadrupoles : 
C D& = 'L' - loiYsr quadrupole. 
C DA = 'M' - middle quadrupole. 
C DA " 'U' - upper quadrupole. 
c 
C Program : 

SUBROUTINE IMRMAS(CLIN, CLOUT, BUFFER, BUFERl, STRING, N, DA, 
F MASS, UNIT) 
BYTE BUFERl(N), BUFFER(N), STRING(N), TERM(2), DA, MSCHAR(5) 
INTEGER CLIN, CLCXJT, TRIGER, UTJIT 
DATA TERM,MSCHAR(5) /I,13,13/ 
CALL CLEAR( STRING, N) 
IF(DA .EQ. 'L') TRIGER = 'L' 
IF(DA .EQ. 'M') TRIGER = 'M' 
IF(DA .EQ. 'U') TRIGER = 'U' 
ENCODE(4,1,HSCHAR) MASS 
DO 100 I » 1,4 

IF(MSCHAR{I) .EQ. ' ') MSCHAR(I) = '0' 
100 CONTINUE 

CALL LR3TLN(CLOUT,TRIGER,1) 
CALL LRECE7(CLIN,, ,RTNCOD,RESET) 
CALL LPUTLN(CL0UT,KSCHAR,5) 
CALL LGETLN(CLIN,STRING,60,RTNC0D,1,TERM) 
WRITE(7,2) STRING 
IF(UNIT .GT. 0) WRITE(UNIT,2) STRING 

1 F0RMAT(I4) 
2 FORMAT('+',60A1/) 

RETURN 
END 
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C SUBROUTINE IMRINI is used to initialize the working conditions. It 
C enables the I/O for the console terminal aind the M6809 microprocessor, 
C which are assigned to unit 0 and 1, and 2 and 3 respectively. If there 
C is anything wrong, the error message will be displayed on the screen C 
and the program will be halted. 
C 
C Program : 

SUBROUTINE IMRINI(CLIN,OXDUT,BUFFER,BUFERl,N) 
INTEGER RINCOD, CLIN, CLOUT 
BYTE BUFFER(N), BUFERl(N) 
CLIN = 2 
CLOUT = 3 
IF(LEr̂ L(0,,,RraCCD}) GOTO 10 
IF(LENABL(1,,,RTNC0D)) GOTO 10 
GOTO 11 

10 CALL LERROR(RTNCOD,10,'Console failed to enable.',25) 
STOP 

11 IF(LENABL(CLIN,BUFFER,N,R'INCOD) .EQ. 0) GOTO 12 
CALL LERR0R(RÏNC0D,11, 'M6809 failed to enable.',23) 
STOP 

12 IF(LENABL(CL0UT,BUFER1,N,R'INC0D) .EQ. 0) GOTO 13 
CALL LERROR(RTNCOD,12,'M6809 failed to enable.',23) 
STOP 

13 RETURN 
END 
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C SUBROUTINE IMRSDP triggers the M6809 to take a single data point. The 
C output from M6809 has to be nanipulated in the calling program. 
C 
C Program : 

SUBRCUTIÎE IMRSDP{CLIN, CLOUT, BUFFER,BUFEPJ, STRING, 
F N, UTJIT) 
BYTE BUFERl(N), BUFFER(N), STRING(N), TERM(2) 
INTEGER CLIN, CLOUT, RTNCOD, RESET, UNIT 
RESET - "1000 
TRIGER = 'I' 
TERM(l) = 1 
TERM(2) = 10 
CALL CLEAR(STRIÎ̂ G, N) 
CALL LRECEV(CLIN,,,RTNCOD,RESET) 
CALL LPUTLN(CLOUT,TRIGER,1) 
TYPE 2 
CALL LGETLN(CLIN,STRING,N,RTNCOD,!,TERM) 
WRITE(7,1) STRING 
IF(UNIT .GT. 0) WRITE(UNIT,1) STRING 

1 FORMAT('+',60A1) 
2 FORMAT('+','TRIGGER OK') 

RETURN 
END 
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C SUBROUTINE IMRWL changes the wavelength WL from REAL to BYTE, and 
C then transmits them to M6809 microprocessor to set the grating at the 
C wavelength. 
c 
C Program : 

SUBRCXJTINE IKRWL(CLIN, CLCOT, BUFFER, BUFERl, N, WL) 
BYTE WLCHAR(6), BUFFER(N), BUFERl(N), STRING(60), TRIGER 
BYTE TERM(2) 
INTEGER CLIN, CLOUT, RINCOD, WLX100(2) 
DATA TERM,TRIGER/1,10,'S'/ 
IF(WL .GE. 0 .OR. WL .LE. 6000) GOTO 10 
WRITE(7,*) 'The wavelength is out of the range. No action is', 

F ' undertaken.' 
GOTO 11 

10 CALL CLEAR{ STRING, 60) 
WLXlOO(l) = INT(WL / 10) 
WLX100(2) = INT(AMOD(WL,10.) * 100) 
ENCODE(6,1,WLCHAR) WLXlOO 
DO 100 I = 1,6 

IF(WLCHAR{I) .EQ. ' ') WLCHAR(I) - '0' 
100 CœiTINUE 

CALL LPUTLN(CLOUT,TRIGER,1) 
CALL LRECEV(CLIN,,,RINCOD,RESET) 
CALL LPUTLN( CLOUT,WLCHAR, 6 ) 
CALL LGETLN(CLIN,STRING,60,RINCOD, 1,TERM) 

1 F0RMAT(2I3) 
11 RETURN 

END 
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II. Programs for data treatment. 

1. Average the output file obtained by using TDATA.FOR. 

C AVESD.FOR reads in data from SPECTR.DAT according to the format defined 
C in AVESD.DAT, and calculates the average values and the standard 
C deviations. Then it writes the results into AVESD.LOG. 
C 
C Program : 

REAL PIE(15,6,6) 
INTEGER N(6,6), N0REP(6) 
0PEN(22, FILE='SPECTR.DAT', STATUS='OLD') 
OPEN{23, FILE='AVESD.DAT', STATUS='OLD') 
0PEN(33; FILE='AVESD.LOG'STATUS='NEW', 

F CARRIAGEC(KrROL='FORTRAN') 
READ(23,*) NOCYCL 
REM)(23,*) NCmSS 
READ(23,*) NOWL 
READ(23,*) (NOREP(I), I=1,NCWL) 
READ(23,*) PHOTBG 
DO 100 K - 1,NOCYCL 

DO 200 J = 1,N0WL 
DO 300 L = 1,N0MASS 

DO 350 M = 1,N0REP{J) 
N(J,L) = N(J,L) + 1 
CALL READSD(VK)ED, WL, X, A, PHOTŒi) 
PIE(N(J,L),J,L) = X / (PHOTOI - PHOTBG) 

350 CCKTINUE 
300 CCKTINUE 
200 OKTINUE 
100 CONTINUE 

DO 400 J = IfBRjML 
DO 500 L = l,N(mSS 

AVE = AVERAG(PIE(1,J,L), N(J,L)) 
S = STAND(PIE(1,J,L), N(J,L), AVE) 
IF(AVE .NE. 0) P = S * 100 / AVE 
WRITE{33,2) AVE, S, P 

500 CCKTINUE 
400 CCOTINuE 
2 FORMATC ', Gil.4, 7X, Gil.4, 7X, F7.2,'%') 

CLOSE{33) 
END 
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2. Calculation of absolute cross section. 

C ABSCS.FOR calculates the absolute cross section for reaction 
C 
C A+ + B —> C+ + D 
C 
C with the following equation 
C 
C ABSCS = Ln{I(A+) / [I(A+) - I(C+)]} / (n * 1) 
C 
C vihere n is number density of the target gas B, 1 is the length of the 
C collision path, and 
C 
C I(C+) = PIE(C+) - PIE(BG of C+) 
C I(A+) = PIE(A+) + PIE(C+) 
C 
C where BG - background. 
C 
C Program : 

REAL ABSCS(20,7), PIEC(6), PIECBG(6), LENGTH, X(20) 
PARAMETER (LENGTH=0.13) 
OPEN(UNIT«22,NAME-'SPECTR.DAT' ,TYPE='OLD' ) 
OPEN(UNIT=33,NAME='TEMP.DAT' ,TYPE='NEW' ) 
READ(22,*) NUM 
N = NUM + 1 
WRITE(33,*) NUM,' product(s)' 
READ(22,*) M 
READ(22,*) P 
DENSIT = 6.022E23 * P * 133.3 / 8.3143 / 298. 
RSAD(22,*) (X(K), K=1,M) 
READ(22,*) (PIECBG{K), K=1,N) 
DO 300 K - 1,M 

CALL PRECS(PIEC, PIECBG, PIEA, N, 22) 
DO 200 J = l.NUM 

A = PIEA - PIEC(J) 
ABSCS(K,J) = 1E20*ALOG(PIEA/A)/DENSIT/LENGTH 

200 CCNTINUE 
300 CONTINUE 

DO 500 I = 1,NUM 
WRITE(33,3) I 
DO 400 J = 1,M 

WRITE(33,4) X(J), ABSCS(J,I) 
400 CONTÎ FJE 
500 CCKTINUE 
3 F0RMAT(//X,'E(eV)',2X,'Product ',11) 
4 FOHnrt.T(X,F5.1,2X,Gil.4) 

CLOSE ( "JNIT=3 3 ) 
END 
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3. Draw PIE spectra. 

C THIS PROGRAM PLOTS PIE SPECTRA OF REACTANT A+ BEFORE AND AFTER 
C COLLI SICan, AND PRODUCT C+. IT ALSO PLOTS ATTENuATICry CURVE AND RATIO 
C CURVE OF REACTANT AND PROKJCT. ALL SPECTRA AND CURVES MUST BE UNIFORMLY 
C DISTRIBUTED POINTS. 
C * * * 
C NOTE: 1. This program is used for analyzing the PIE data without 
C any correction. If photoelectric yield should be used to 
C correct the PIE data detected with tungston detector, the 
C program AUTOPC.FOR should be used. 
C 
C 2. MARK is used to indicate the différente species in the reaction 
C 
C A+ + B > C+ + D 
C 
C MARK =1 10 ; A+ BEFORE COLLISION 
C MARK = 2 I : A+ AFTER COLLISIŒ̂  
C MARK =3 Ic ; PRODUCT 
C MARK = 4 (I0-I)/I0 ; ATTENUATION 
C MARK = 5 IC/IO ; CONSTANT * PRODUCT CROSS SECTION 
C 
C 3. The maximum dimentions in the arrays of wavelength and the 
C corresponding data is 100. 
C 
C Program ; 

REAL XAXIS(IOO), Y{100,5), NOISE 
INTEGER KEY(5), KEYY(5) 
CHARACTER*11 DATE, FILENM, XTIT, YTIT, TIT(5) 
DATA XSIZE,YSI2E,KEY,YMIN,YMAX,NOISS/10.25,7.25,5*0,3*0./ 
TIT(4) = 'Attenuation' 
TIT(5) = 'Ic/lO ' 
OPEN{UNIT>=22, NAME='SPECTR.DAT', TYPE-'OLD') 
0PEN(UNIT=9, NAME='PT:OUTPUT.DAT', TYPE='NEW') 
READ(22,1) DATE 

1 FORMAT(All) 
READ(22,1) FILENM 
READ(22,1) XTIT 
READ{22,1) YTIT 

5 RSAD(22,4,ERR=5,END=7) SIO:, MARK 
IF(SIOJ .EQ. 'AA') READ(22,*) PHOTBG 
IF(SIC2J .EQ. 'BE') READ(22,*) PIEBG 
IF(SIŒ .bB. 'MM') GOTO 5 
IF(MARK .EQ. 1 .OR. MARK .EQ. 2 .OR. MARK .EQ. 3) GOTO 10 
TYPE*, 'The MM# is wrong in the data file.' 
GOTO 11 

10 R5AD(22,1) TIT (MARK) 
CALL GETDAT(XMajÇ,XMIN,XTIC,N,Y(1,MARK) ,100,YYMAX,PIEBG,PHOTBG) 
ï?{YïîîAX .ox. Yî-îrtX) ïï'ïAX = Yïï-ÎAX 
KEY(MARK) = 1 
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GOTO 5 
4 F0RMAT(A2,I1) 
7 ÏMAX = YMAX * 1.2 

YTIC = YMAX / 4. 
3 FORMAT(Al) 

CALL WL(XAXIS, N, XMIN, XMAX, XTIC) 
C 
C CHOOSE TERMINAL OR HI PLOTTER 
C 
123 CALL PRC»IP(Y, N, 5, KEY, KEYY) 
12 TYPE 6 
6 FORMAT(/X,'Choose one of the follovângs by number :',//7X,'l. ' 

F 'Change scale or frame size.',/7X,'2. Change values.',/7X,'3. ' 
F 'Normalization.',/7X,'4. Plot.',/7X,'5. Calculate cross section 
F /7X,'6. Choose other curves. ' ,/7X,'7. Exit. ' ,//X,'Number = ',$) 
ACCEPT*, NUM 
IF(NUM .EQ. 1) CALL SCALEl(XMIN,XMAX,XTIC, YMIN,YMAX,YTIC, 

F XSIZE,YSIZE) 
IF(NUM .EQ. 2) CALL ALGEB(Y, N, 5, KEYY) 
IF(NUM .EQ. 3 .AND. KEYY(l) .EQ. 1 .AND. KEYY(3) .EQ. 1) 

F CALL NORMLZ(XAXIS, Y(l,3), Y(l,l), N) 
IF(NUM .EQ. 3 .AND. KEYY(l) .NE. 1 .OR. NUM .EQ. 3 .AND. 

F KEYY(3) .NE. 1) TYPE*,'Cannot find data.' 
IF(NUM .EQ. 5) CALL CR0SSN(XAXIS,y(l,l),Y(l,3),N) 
IF(NUM .EQ. 6) GOTO 123 
IF(NUM .EQ. 7) GOTO 11 
IF(NUM .NE. 4) GOTO 12 
CALL CHOICE(lUNIT) 
CALL INIPLTdUNIT, XSIZE, YSIZE) 
CALL SCALEvXMIN, XMAX, YMIN, YMAX) 
CALL AXIS(XTIC.YTIC. XTIT. 11.2.1, YTIT, 11,2,3) 
1 = 1 

13 IF(I .GT. 5) GOTO 14 
IF(KEYY(I) .EQ. 1) CALL LINE(XAXIS, Y(1,I), N, 1,0,0,0) 
1 = 1 + 1 

GOTO 13 
C 
C CONSTRUCT LEGEND 
C 
14 1 = 1 

CALL INILC2̂ (5.5, 7.5, 4., 5.5) 
CALL ?3RILŒ(DA.TS, S, 0,0,0,0) 
CALL WRILGN(FILENM, 11, 0,0,0,0) 

15 IF(I .GT. 5) GOTO 16 
IF(KEYY(I) .EQ. 1) CALL MRILŒ(TIT(I), 11, 1,0,0,0) 
1 = 1 + 1 
GOTO 15 

16 CCsfTï̂ iUE 
CALL Ê E)LŒ 
CALL SNDPLT 
GOTO 12 
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C 
11 CCOTINUE 

END 
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4. Subroutines. 

C Subroutine READSD(WORD, WL, ICN, BACKGD, PHOTON) reads data from 
C SFEĈ xv.DnT wiui wis fonûât of 6800 output as follawiny rcpeatly: 
C 
C ;I (WL)****.** (ICN)******** (BACKGD)******** (PHOIŒ)******** 
C 
C PROGRAM : 

SUBROUTINE READSD(WORD, WL, ICM, BACKGD, PHOTON) 
REAL lOJ 

10 READ(22,1,ERR=10) WORD, WL, lŒ, A, PHOTCX̂  
IF(WORD .NE. GOTO 10 

1 FORMAT(A2,X,F7.2,5X, 3(F8.0,2X)) 
RETURN 
END 
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C SUBROUTINE MULTSC reads in the ion counts of n products for reaction 
C 
C I0(A+) + B —> I(A+) + II + 12 + ... + In 
C 
C For product li, the cross section is calculated by using the following 
C equation in the calling program : 
C 
C ABSCS(i) = li / [I(i) * n * 1] 
C ABSCS(i) = Ln{I(i) / [I(i) - li]} / (n * 1) 
C 
C where n is number density of the target gas B, 1 is the length of the 
C collision path, and 
c 
C I(i) = I(A+) +11' + ... + Ii-1' + Ii+1' + ... + In' 
C 
C v̂ ere Ij' = Ij - Ij(Background). 
C This subroutine calculates the I(i) and return Ij' and I{i) to the 
C calling program. ION(i)=Ii', SUM(i)=I(i). 
C 
C Program ; 

SUBROUTINE PRECSdCN, EG, SUM, NN, UNIT) 
INTEGER UNIT 
REAL lai(NN), BG(NN), SUM 
J = 0 
DO 100 I = 1,NN 

J = J + 1 
READ(UNIT,1) lŒf(J), SIÔ  

TYPE*, im(j) 
IF(SIC2̂ AL .NE. 'PP') GOTO 10 
PIW = IC»I(J) - BG(I) 
J — J — 1 
GOTO 100 

10 IC»J(J) = IW(J) - BG(I) 
100 cœrriNUE 

SUM = PIŒ 
N = NN — 1 
LAJ auu u = X,iN 

SUM = SUM + ICN(J) 
300 CONTINUE 
1 F0RMAT(G11.4, 2X, A2) 

RETURN 
END 
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SUBROUTINE PROTP(Y, N, NC, KEY, KEYY) 
REAL Y(100,5) 
INTEGER KEYY(NC), KEY(NC) 
DO 300 I = 1,NC 

KEYY(I) = 0 
300 CONTINUE 
10 TYPE 1 
1 FXDRMAT(X,'FOR REACTION',//,8X,'A+ + B > C+ + D',//, 

F X,'CHOOSE THOSE YOU WANT TO PLOT BY NUMBER',//) 
IF{KEY(1) .EQ. 1) TYPE*,' 1. PIE of A+ before collision.' 
IF(KEY(2) .EQ. 1) TYPE*,' 2. PIE of A+ after collision.' 
IF(KEY(3) .EQ. 1) TYPE*,' 3. PIE of C+.' 
IF(KEY(1) .EQ. 1 .AND. KEY(2) .EQ. 1) TYPE*,' 4. Attenuation.' 
IF(KEY(1) .EQ. 1 .AND. KEY(3) .EQ. 1) TYPE*,' 5. Ic/lO.' 
TYPE*,' 6. NOiE.' 

11 TYPE 2 
2 FORMAT(/X,'NUMBER = ',$) 

ACCEPT*, NUMBER 
IF(NUMBER .LT. 1 .OR. NUMBER .GT. 6) GOTO 10 
IF(NUMBER .EQ. 6) GOTO 12 
KEYY(NUMBER) = 1 
GOTO 11 

12 IF(KEYY(4) .NE. 1) GOTO 13 
DO 100 I « 1,N 

Yd,4) = (Y(I,1) - Y(I,2)) / Y(I,1) 
100 CONTINUE 
13 IF(KEYY{5) .NE. 1) GOTO 14 

DO 200 I = 1,N 
Yd,5) = Yd,3) / Yd,l) 

200 CCm-INUE 
14 RETURN 

END 
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APPENDIX B. 

BLOCK DIAGRAM OF THE CmPUTER SYSTEM 
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Figure B.l Block diagram of the conçuter system : 2030 bus is the main 

communication path in the M6809 microprocessor governed computer 

(6809 conçuter). The resident programs in 6809 computer control 

signal input and output between the 6809 conçuter and the 

electronic parts of the apparatus directly. The output signals 

go to the quadrupole mass filters (OiF) and motor sequencer 

(MOTOR SEQNCR) of the monochromator through the peripheral 

interface adapters (PIA), and digital-to-analog converters 

(D/A). The input signals are photon signal, ion signal, and DC 

voltages of the lens systems, QMFs, and octopole gas cells. The 

LSI-11 conpjter is the master in the whole system. The LSl-11 

and 6809 conçuters communicate through an asynchronous 

communication interface adapter (ACIA). Through a modem, the 

LSI-11 can communicate with any other conçjuter system (WORLD) 
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